Термодинамическая энтропия {\displaystyle S}, часто именуемая энтропией, — физическая величина, используемая для описания термодинамической системы, одна из основных термодинамических величин. Энтропия является функцией состояния и широко используется в термодинамике, в том числе технической (анализ работы тепловых машин и холодильных установок) и химической (расчёт равновесий химических реакций.
Если в некоторый момент времени энтропия замкнутой системы отлична от максимальной, то в последующие моменты энтропия не убывает — увеличивается или в предельном случае остается постоянной.
Закон не имеет физической подоплёки, а исключительно математическую, то есть теоретически он может быть нарушен, но вероятность этого события настолько мала, что ей можно пренебречь.
Так как во всех осуществляющихся в природе замкнутых системах энтропия никогда не убывает — она увеличивается или, в предельном случае, остается постоянной — все процессы, происходящие с макроскопическими телами, можно разделить на необратимые и обратимые.
Под необратимыми подразумеваются процессы, сопровождающиеся возрастанием энтропии всей замкнутой системы. Процессы, которые были бы их повторениями в обратном порядке — не могут происходить, так как при этом энтропия должна была бы уменьшиться.
Обратимыми же называют процессы, при которых термодинамическая энтропия замкнутой системы остается постоянной. (Энтропия отдельных частей системы при этом не обязательно будет постоянной.)
Термодинамическая энтропия {\displaystyle S}, часто именуемая энтропией, — физическая величина, используемая для описания термодинамической системы, одна из основных термодинамических величин. Энтропия является функцией состояния и широко используется в термодинамике, в том числе технической (анализ работы тепловых машин и холодильных установок) и химической (расчёт равновесий химических реакций.
Если в некоторый момент времени энтропия замкнутой системы отлична от максимальной, то в последующие моменты энтропия не убывает — увеличивается или в предельном случае остается постоянной.
Закон не имеет физической подоплёки, а исключительно математическую, то есть теоретически он может быть нарушен, но вероятность этого события настолько мала, что ей можно пренебречь.
Так как во всех осуществляющихся в природе замкнутых системах энтропия никогда не убывает — она увеличивается или, в предельном случае, остается постоянной — все процессы, происходящие с макроскопическими телами, можно разделить на необратимые и обратимые.
Под необратимыми подразумеваются процессы, сопровождающиеся возрастанием энтропии всей замкнутой системы. Процессы, которые были бы их повторениями в обратном порядке — не могут происходить, так как при этом энтропия должна была бы уменьшиться.
Обратимыми же называют процессы, при которых термодинамическая энтропия замкнутой системы остается постоянной. (Энтропия отдельных частей системы при этом не обязательно будет постоянной.)
1) s = at − вt² + ct³
начнем со скорости тела.
известно что скорость тела это 1-ая производна от пути по времени
в нашем случа
2) s'(t)=v(t)=(ct³− вt² + at)'=3ct²-2bt+a
а ускорение это 1-ая производная от скорости по времени или втора поризводная от пути по времени
для нашего уравнения
3) v'(t)=s''(t)=(3ct²-2bt+a)'=6ct-2b
ну а теперь просто подставим в наши три уравнения t=2 а = 2 м/с, в = 3 м/с², с = 4 м/с³
s(2)=4*2³-3*2²+2*2=32-12+4=24 м
v(2)=3*4*2²-2*3*2+2=48-12+2=38 м/с
a(2)=6*4*2-2*3=48-6=42 м/с²