Найти потенциал шара радиуса R = 0,1 м, если на расстоянии r=10м от его поверхности потенциал электрического поля
Поле вне шара совпадает с полем точечного заряда, равною заряду q шара и помещенного в его центре. Поэтому потенциал в точке, находящейся на расстоянии R + r от центра шара, jr= kq/(R + r); отсюда q = (R + r)jr/k. Потенциал на поверхности шара
2 N одинаковых шарообразных капелек ртути одноименно заряжены до одного и того же потенциала j. Каков будет потенциал Ф большой капли ртути, получившейся в результате слияния этих капель?
Пусть заряд и радиус каждой капельки ртути равны q и r. Тогда ее потенциал j = kq/r. Заряд большой капли Q = Nq, и если ее радиус равен R, то ее потенциал Ф = kQ/R = kNq/R = Njr/R. Объемы маленькой и большой капель и связаны между собой соотношением V=Nu. Следовательно, и потенциал
3 В центре металлической сферы радиуса R = 1 м, несущей положительный заряд Q=10нКл, находится маленький шарик с положительным или отрицательным зарядом |q| = 20 нКл. Найти потенциал j электрического поля в точке, находящейся на расстоянии r=10R от центра сферы.
В результате электростатической индукции на внешней и внутренней поверхностях сферы появятся равные по модулю, но противоположные по знаку заряды (см. задачу 25 и рис. 332). Вне сферы потенциалы электрических полей, создаваемых этими зарядами, в любой точке равны по модулю и противоположны по знаку. Поэтому потенциал суммарного поля индуцированных зарядов равен нулю. Таким образом, остаются лишь поля, создаваемые вне сферы зарядом BQ на ее поверхности и зарядом шарика q. Потенциал первого поля в точке удаленной от центра сферы на расстояниеr, , а потенциал второго поля в той же точке . Полный потенциал . При q=+20нКлj=27В; при q=-20нКл j=-9В.
4 До какого потенциала можно зарядить находящийся в воздухе (диэлектрическая проницаемость e=1) металлический шар радиуса R = 3 см, если напряженность электрического поля, при которой происходит пробой в воздухе, Е=3 МВ/м?
Наибольшую напряженность электрическое поле имеет у поверхности шара:
Потенциал шара ; отсюда j=ER=90 В.
5 Два одинаково заряженных шарика, расположенных друг от друга на расстоянии r = 25 см, взаимодействуют с силой F=1 мкН. До какого потенциала заряжены шарики, если их диаметры D = 1 см?
Из закона Кулона определяем заряды шариков: . Заряд q, находящийся на шарике радиуса R = D/2, создает на поверхности этого шарика потенциал
В том месте, где находится этот шарик, заряд другого шарика создает потенциал . Таким образом, потенциал каждого шарика
6 В вершинах квадрата расположены точечные заряды (в нКл): q1 = +1, q2=-2, q3= +3, q4=-4 (рис. 71). Найти потенциал и напряженность электрического поля в центре квадрата (в точке А). Диагональ квадрата 2а = 20 см.
Потенциал в центре квадрата равен алгебраической сумме потенциалов, создаваемых всеми зарядами в этой точке:
Напряженность поля в центре квадрата является векторной суммой напряженностей, создаваемых каждым зарядом в этой точке:
Модули этих напряженностей
Удобно сначала сложить попарно векторы, направленные по одной диагонали в противоположные стороны (рис. 339): E1 + E3 и E2 + E4. При данных зарядах сумма E1 + E3 по модулю равна сумме Е2 + Е4. Поэтому результирующая напряженность Е направлена по биссектрисе угла между диагоналями исоставляет с этими диагоналями углы a=45°. Ее модуль E=2545 В/м.
7 Найти потенциалы и напряженности электрического поля в точках а и b, находящихся от точечного заряда q=167нКл на расстояниях rа = 5 см и rb = = 20 см, а также работу электрических сил при перемещении точечного заряда q0 = 1 нКл из точки а в точку b.
Посмотрев на таблицу менделеева, мы видим, что онаначинается водородом, а кончается ураном. начинается с легких элементов,кончается тяжелыми. есть еще другой способ освобождения и энергии. этот путь основан на преобразовании ядер легкихэлементов, расположенных в начале таблицы менделеева. только энергия,выделяющаяся при этих преобразованиях, называется не ядерной, а термоядерной.приставка термо определяет способ освобождения этойэнергии. термос по-гречески означает тепло. термоядерная энергия этоэнергия, получаемая при тепла. оказывается, если два ядра атомов легких элементов сблизитьмежду собой вплотную, то между ними произойдет ядерная реакция. в результатеэтой реакции из двух легких ядер образуется более тяжелое ядро и выделяетсяэнергия причем этой энергии на единицу массы выделяется значительно больше,чем при делении тяжелых ядер.такая ядерная реакция называется реакцией синтеза т.е. слияния , а энергия энергией синтеза ядер. это и есть термоядернаяэнергия. для выделения заметной энергии нужно, чтобы термоядернаяреакция происходила во всем объеме вещества. и чтоб разогнать все ядра веществанадо воспользоваться нагреванием. ведь при нагревании тела скорость движенияатомов следовательно, и ядер увеличивается. значит, если нагреть вещество,состоящее из ядер легких элементов, до достаточно высокой температуры, тоначнется термоядерная реакция. энергии, выделяющейся при этой реакции, хватит идля поддержания реакции, и для полезного использования. а энергия выделитсяогромная. если при делении одного грамма урана выделяется энергия,эквивалентная энергии, получаемой при сгорании двух с половиной тонн угля, топри синтезе одного грамма легких ядер выделится энергия, эквивалентная энергииуже десятков тонн каменного угля. чтобы реакция пошла достаточно интенсивно нужны десяткимиллионовградусов, а достигнутые в технике температуры малы. они не превышают пяти-шести тысяч градусов. но в 1950 г. двое советских ученых академики сахаров и тамм впервые предложили один из способов получения сверхвысоких температур в земных условиях. их идея заключалась в том, чтобы через плазму пропускать электрический ток большой силы в десятки тысяч ампер. пропускать такой ток можно только импульсами длительностью в доли секунды.ведь никакие проводники не выдержат такого тока, они сразу расплавятся. но в момент пропускания тока под действием возникающих электродинамических сил плазма сожмется в тонкий шнур, имеющий огромную температуру. таким образом, если плазма получена из атомов легких элементов, то можно ожидать возникновения термоядерной реакции при пропускании через нее электрического тока. именно об этих опытах большого коллектива советских ученых и рассказал в 1956 г. в харуэлле игорь васильевич курчатов. но неимоверные трудности стоят на пути осуществления контролируемой термоядерной реакции. именно контролируемой, потому что неконтролируемая,взрывная термоядерная реакция происходит при взрыве водородной бомбы. проблема использования термоядерной энергии по праву считается проблемой 1 современной науки. ее решение позволит навсегда избавить человечество от угрозы энергетического голода. ведь моря и океаны содержат огромные запасы тех самых легких ядер, которые необходимы для термоядерной реакции.
Объяснение:
Найти потенциал шара радиуса R = 0,1 м, если на расстоянии r=10м от его поверхности потенциал электрического поля
Поле вне шара совпадает с полем точечного заряда, равною заряду q шара и помещенного в его центре. Поэтому потенциал в точке, находящейся на расстоянии R + r от центра шара, jr= kq/(R + r); отсюда q = (R + r)jr/k. Потенциал на поверхности шара
2 N одинаковых шарообразных капелек ртути одноименно заряжены до одного и того же потенциала j. Каков будет потенциал Ф большой капли ртути, получившейся в результате слияния этих капель?
Пусть заряд и радиус каждой капельки ртути равны q и r. Тогда ее потенциал j = kq/r. Заряд большой капли Q = Nq, и если ее радиус равен R, то ее потенциал Ф = kQ/R = kNq/R = Njr/R. Объемы маленькой и большой капель и связаны между собой соотношением V=Nu. Следовательно, и потенциал
3 В центре металлической сферы радиуса R = 1 м, несущей положительный заряд Q=10нКл, находится маленький шарик с положительным или отрицательным зарядом |q| = 20 нКл. Найти потенциал j электрического поля в точке, находящейся на расстоянии r=10R от центра сферы.
В результате электростатической индукции на внешней и внутренней поверхностях сферы появятся равные по модулю, но противоположные по знаку заряды (см. задачу 25 и рис. 332). Вне сферы потенциалы электрических полей, создаваемых этими зарядами, в любой точке равны по модулю и противоположны по знаку. Поэтому потенциал суммарного поля индуцированных зарядов равен нулю. Таким образом, остаются лишь поля, создаваемые вне сферы зарядом BQ на ее поверхности и зарядом шарика q. Потенциал первого поля в точке удаленной от центра сферы на расстояниеr, , а потенциал второго поля в той же точке . Полный потенциал . При q=+20нКлj=27В; при q=-20нКл j=-9В.
4 До какого потенциала можно зарядить находящийся в воздухе (диэлектрическая проницаемость e=1) металлический шар радиуса R = 3 см, если напряженность электрического поля, при которой происходит пробой в воздухе, Е=3 МВ/м?
Наибольшую напряженность электрическое поле имеет у поверхности шара:
Потенциал шара ; отсюда j=ER=90 В.
5 Два одинаково заряженных шарика, расположенных друг от друга на расстоянии r = 25 см, взаимодействуют с силой F=1 мкН. До какого потенциала заряжены шарики, если их диаметры D = 1 см?
Из закона Кулона определяем заряды шариков: . Заряд q, находящийся на шарике радиуса R = D/2, создает на поверхности этого шарика потенциал
В том месте, где находится этот шарик, заряд другого шарика создает потенциал . Таким образом, потенциал каждого шарика
6 В вершинах квадрата расположены точечные заряды (в нКл): q1 = +1, q2=-2, q3= +3, q4=-4 (рис. 71). Найти потенциал и напряженность электрического поля в центре квадрата (в точке А). Диагональ квадрата 2а = 20 см.
Потенциал в центре квадрата равен алгебраической сумме потенциалов, создаваемых всеми зарядами в этой точке:
Напряженность поля в центре квадрата является векторной суммой напряженностей, создаваемых каждым зарядом в этой точке:
Модули этих напряженностей
Удобно сначала сложить попарно векторы, направленные по одной диагонали в противоположные стороны (рис. 339): E1 + E3 и E2 + E4. При данных зарядах сумма E1 + E3 по модулю равна сумме Е2 + Е4. Поэтому результирующая напряженность Е направлена по биссектрисе угла между диагоналями исоставляет с этими диагоналями углы a=45°. Ее модуль E=2545 В/м.
7 Найти потенциалы и напряженности электрического поля в точках а и b, находящихся от точечного заряда q=167нКл на расстояниях rа = 5 см и rb = = 20 см, а также работу электрических сил при перемещении точечного заряда q0 = 1 нКл из точки а в точку b.