На якій висоті над поверхнею Землі сила тяжіння що діє на тіло космонавта має таку саму величину що й сила тяжіння що діє на тіло його дружини на поверхні Землі. Маса космонавта становить 81 кг а маса його дружини 64 кг. Радіус Землі дорівнює 6400км.
Шаг 1. Пусть начало отсчета совпадает с мотоциклистом. Ось X направим вдоль дороги от мотоциклиста в сторону велосипедиста, как показано на рис. 39. В качестве единицы длины выберем 1 м. Часы (секундомер) включим в момент начала наблюдения.
Движение велосипедиста относительно мотоциклиста
Шаг 2. Найдем начальную координату велосипедиста xв0 в момент времени t = 0. Видно, что в выбранной системе отсчета xв0 = 600 м, так как расстояние от начала отсчета (мотоциклиста) до велосипедиста l = 600 м.
Шаг 3. В выбранной системе отсчета мотоциклист неподвижен (так как он является началом отсчета и его координата все время равна xм = 0). Определим значение скорости велосипедиста. В выбранной системе отсчета Земля вместе с дорогой движутся в отрицательном направлении оси X со скоростью, имеющей значение Vз = -|vм| = -20 м/с. Велосипедист по условию задачи движется относительно Земли также в отрицательном направлении оси X (навстречу мотоциклисту) со скоростью, имеющей значение vв = -10 м/с. Значит, относительно выбранной системы отсчета (мотоциклиста) велосипедист будет двигаться со скоростью, значение которой равно Vв = Vз + vв = (-20) + (-10) = -30 м/с. Напомним, что здесь, как и в предыдущем параграфе, мы обозначаем буквами v значения скоростей относительно Земли, а значения скоростей тел в выбранной системе отсчета – большими буквами V.
Шаг 4. Запишет законы движения мотоциклиста и велосипедиста:
xм = 0
xв = xв0 + Vв · t = 600 - 30 · t.
Шаг 5. Представим в виде уравнения условие задачи, т. е. условие встречи мотоциклиста и велосипедиста. Как вы помните, это условие означает равенство координат движущихся навстречу друг другу тел. Поэтому
xв = xм.
Шаг 6. Объединим полученные уравнения, присвоив каждому из них номер и название:
xм = 0 (1) (закон движения мотоциклиста)
xв = 600 - 30 · t, (2) (закон движения велосипедиста)
xв = xм. (3) (условие встречи)
Шаг 7. Решим полученные уравнения, подставив в условие встречи (3) координаты xм и xв из уравнений (1) и (2):
0 = 600 - 30 · t,
tвстр = t = 600/30 = 20 (с).
Таким образом, встреча произойдет через 20 с.
Обратим внимание на существенное отличие данного решения от , которым мы решали задачу «встреча» раньше. Оно заключается в том, что теперь, когда мы связали систему отсчета с одним из движущихся тел, закон его движения стал очень простым: xм(t) = 0. Это существенно упростило решение уравнений. Особенно важно это будет в дальнейшем, когда тела в задачах будут двигаться намного сложнее.
Упражнения
1. Заметим, что начиная с шага 4 мы могли бы решить рассмотренную только что задачу и графическим . Это сделано на рис. 40. Объясните, что изображено на этом рисунке.
График движения велосипедиста
2. Решите задачу, изображенную на рис. 38, в системе отсчета, связанной с велосипедистом. (Особое внимание уделите вопросам: куда направить координатную ось? Куда и с какой скоростью в этой системе отсчета будут двигаться Земля и мотоциклист?)
Штатная скорость км/ч м/с м/с м/с.
Интервал движения
Время посадки высадки
Время торможения до остановки
Тормозной путь м .
Длина состава м .
Найти: дистанцию между составами в [м] и [мм].
Р е ш е н и е :
Все положения, упоминаемые в доказательстве решения, отмечены на приложенном к решению рисунке.
Искомая дистанция между поездами – это свободное пространство вдоль железнодорожного полотна. Таким образом – дистанция в данном случае – это расстояние от ведущего вагона (начала) заднего Скоростного состава (положение С) до Конца припаркованного состава (положение К) в тот момент, когда припаркованный собирается отправляться.
Нам неизвестно, является ли торможение составов перед остановкой равнозамедленным или нет, и нам это знать и не нужно (!), поскольку нам дано и время, и скорость, и тормозной путь. Всё, что нам нужно – это корректно учесть все слагаемые времени и пути при торможении.
Общий интервал движения составляет и это означает, что каждые секунд, в положении Н оказывается Начало очередного состава. Уже припаркованный состав простоял на станции а это означает, что следующему за ним составу осталось проехать из положения С (начало скоростного состава) до точки Н (начало припаркованного состава) в течение секунд.
Искомая дистанция между составами, как мы уже говорили выше, измеряется не от положения С до положения Н, а от положения С до положения К (конец припаркованного состава). Однако нам будет удобно найти весь остаточный путь СН (между положениями С и Н), а затем вычесть из него длину КН (между положениями К и Н), равную длине состава м.
Из секунд, оставшихся идущему следом составу, первые секунд он будет идти с постоянной скоростью м/с из положения С в положение О, а последующие секунд он будет останавливаться из положения О до положения Н.
Длину отрезка ОН мы и так знаем, это тормозной путь м . Теперь найдём СО, т.е. длину Мы знаем, что по отрезку СО состав двигается равномерно со скоростью в течение времени секунд, значит отрезок СО, т.е. м м .
Отсюда ясно, что вся длина СН = СО + ОН , т.е.
СН м м.
Как было показано выше искомая дистанция – это длина СК, равная разности СН и КН, т.е. СН и .
Итак: СК CH
м м.
О т в е т : дистанция между составами: м мм .