На яку довжину радіохвиль розрахований радіоприймач, коливальний контур якого складається з котушки індуктивністю 2,4.10 -3Гн і конденсатора ємністю 600 пФ?
Объяснение:Решение : Когда выстрел производится в момент пролёта самолёта над орудием, то стрелять вертикально вверх бесполезно, ибо за время подъёма снаряда до высоты самолёта, цель улетит далеко. Значит, надо стрелять под углом α к горизонту в направлении курса самолёта (в догонку).
За время tп полёта снаряда путь самолёта Vц•tп равен горизонтальной проекции пути снаряда :
Vц•tп = Vс•tп•cos(α) (поражение цели - это момент встречи снаряда с целью),
откуда cos(α) = Vц / Vс = 0,5 , что соответс углу α = 60°.
Вертикальная проекция скорости Vy снаряда в момент выстрела равна Vс•sin(α). С течением временем t вертикаль-скорость уменьшается под воздействием силы земного тяготения на снаряд:
Vy = Vс•sin(α) - g•t
Максимальная высота поражения будет в момент t1, когда вертикальная проекция скорости обнулится:
Vс•sin(α) - g•t1 = 0
Тогда t1 = tп = Vс•sin(α) / g = 34,64 с , потому что sin(α) = sin(60°) = √3/2 = 0,866
Что означает некорректное Условие2 "при произвольном выборе момента выстрела" ? Остаётся догадываться, будто самолёт летит в направлении вертикали над орудием, и наводчику остаётся лишь выстрелить вертикально вверх с упреждением момента подлёта самолета к вертикали. Момент выстрела нам сейчас не нужен, а максимальная высота поражения вычисляется по той же выше-формуле с учётом α=90°, когда sin(α)=1 :
H2 = Vс2 / (2•g) = 8000 м
ответ : максимальная высота поражения в первом случае равна 6,0 км , во 2м случае - 8,0 км.
1) Первое, что мы можем найти, особо не думая, - это скорость точки шара, которая соприкасается с рельсом Vp:
Vp = S / t. (1)
2) А теперь самое интересное. Так как угловая скорость равна углу поворота радиус-вектора за единицу времени (которое у нас для обеих скоростей одинаково), то W1 = W2 (для дальнейшего погружения в решение советую открыть рисунок):
Vp / h = V / (h + R). (2)
Из теоремы Пифагора находим h:
h = sqrt ( R^2 - (l/2)^2 ). (3)
Выражаем горизонтальную скорость из уравнения (2):
V = Vp (h + R) / h.
С учетом формулы (3) и (1) получаем:
V = S ( sqrt(R^2 - (l^2/4) ) + R ) / t sqrt(R^2 - (l^2/4)
Объяснение:Решение : Когда выстрел производится в момент пролёта самолёта над орудием, то стрелять вертикально вверх бесполезно, ибо за время подъёма снаряда до высоты самолёта, цель улетит далеко. Значит, надо стрелять под углом α к горизонту в направлении курса самолёта (в догонку).
За время tп полёта снаряда путь самолёта Vц•tп равен горизонтальной проекции пути снаряда :
Vц•tп = Vс•tп•cos(α) (поражение цели - это момент встречи снаряда с целью),
откуда cos(α) = Vц / Vс = 0,5 , что соответс углу α = 60°.
Вертикальная проекция скорости Vy снаряда в момент выстрела равна Vс•sin(α). С течением временем t вертикаль-скорость уменьшается под воздействием силы земного тяготения на снаряд:
Vy = Vс•sin(α) - g•t
Максимальная высота поражения будет в момент t1, когда вертикальная проекция скорости обнулится:
Vс•sin(α) - g•t1 = 0
Тогда t1 = tп = Vс•sin(α) / g = 34,64 с , потому что sin(α) = sin(60°) = √3/2 = 0,866
За это время снаряд долетит до макси-высоты
H1 = Vс•t1•sin(α) - g•t12/2 = Vс•[Vс•sin(α) / g]•sin(α) - g•[Vс•sin(α) / g]2/2 = Vс2•sin2(α) / g - g•Vс2•sin2(α) / (2•g2) = Vс2•sin2(α) / g - Vс2•sin2(α) / (2•g) = Vс2•sin2(α) / (2•g) = 6000 м
Что означает некорректное Условие2 "при произвольном выборе момента выстрела" ? Остаётся догадываться, будто самолёт летит в направлении вертикали над орудием, и наводчику остаётся лишь выстрелить вертикально вверх с упреждением момента подлёта самолета к вертикали. Момент выстрела нам сейчас не нужен, а максимальная высота поражения вычисляется по той же выше-формуле с учётом α=90°, когда sin(α)=1 :
H2 = Vс2 / (2•g) = 8000 м
ответ : максимальная высота поражения в первом случае равна 6,0 км , во 2м случае - 8,0 км.
Vp = S / t. (1)
2) А теперь самое интересное. Так как угловая скорость равна углу поворота радиус-вектора за единицу времени (которое у нас для обеих скоростей одинаково), то W1 = W2 (для дальнейшего погружения в решение советую открыть рисунок):
Vp / h = V / (h + R). (2)
Из теоремы Пифагора находим h:
h = sqrt ( R^2 - (l/2)^2 ). (3)
Выражаем горизонтальную скорость из уравнения (2):
V = Vp (h + R) / h.
С учетом формулы (3) и (1) получаем:
V = S ( sqrt(R^2 - (l^2/4) ) + R ) / t sqrt(R^2 - (l^2/4)
Вот и все, отмучались, хе. Получаем:
V = 1,2 (sqrt(9*10^-4 - (16*10^-4/4)) + 3*10^-2 / 2 sqrt(9*10^-4 - (16*10^-4/4))
V = 1,4 м/с