Если равноплечие весы будут находиться в равновесии, значит на левую и правую чаши весов действуют одинаковые по величине силы, то есть верно следующее равенство (смотрите схему): mg — {f_{а1}} = mg — {f_{а2}} распишем силы архимеда f_{а1} и f_{а2} в левой и правой части равенства по известной формуле: mg — {\rho _в}g{v_1} = mg — {\rho _в}g{v_2} m — {\rho _в}{v_1} = m — {\rho _в}{v_2} неизвестный объем v_2 можно выразить из массы m и плотности \rho по формуле: {v_2} = \frac{m}{\rho } m — {\rho _в}{v_1} = m — {\rho _в}\frac{m}{\rho } m — {\rho _в}{v_1} = \frac{{m\left( {\rho — {\rho _в}} \right)}}{\rho } выразим неизвестную массу гирь m: m = \frac{{\rho \left( {m — {\rho _в}{v_1}} \right)}}{{\rho — {\rho _в}}} переведем плотности и объем тела в систему си: 1\; г/см^3 = 1000\; кг/м^3 7\; г/см^3 = 7000\; кг/м^3 100\; см^3 = {10^{ — 4}}\; м^3 посчитаем численный ответ к : m = \frac{{7000 \cdot \left( {1 — 1000 \cdot {{10}^{ — 4}}} \right)}}{{7000 — 1000}} = 1,05\; кг ответ 1,05кг
Гиря продавит уровень в среднем сосуде гидравлической системы, при этом в крайних сосудах уровень керосина поднимется на некоторую дополнительную к начальному уровню высоту\Delta h .
В силу несжимаемости керосина, какой его объём отойдёт из среднего сосуда, такой же объём и поступит в крайние сосуды. Так как крайние сосуды одинаковы, то в каждый из них отойдёт половина объёма керосина, отошедшего из центрального сосуда. Объём в каждом сосуде пропорционален его высоте, поскольку сечение всех сосудов одинаковы. А это значит, что подъём уровня керосина в крайних сосудах будет вдвое меньше, чем опускание его уровня в центральном сосуде с гирей. Итак, уровень керосина в центральном сосуде опустится на2 \Delta h .
В целом, уровни керосина в крайних сосудах будут выше его опустившегося уровня в центральном сосуде на3 \Delta h .
Этот добавочный столб жидкости3 \Delta hбудет создавать такое же дополнительное давление, как и гиря, находящаяся на нижнем уровне, поскольку, в конечном счёте, вся система придёт в гидравлическое равновесие.
Давление добавочного столба жидкости : 3 \rho g \Delta h ,
Давление гири : \frac{mg}{S} ,
Значит: 3 \rho g \Delta h = \frac{mg}{S};
Значит: 3 \rho \Delta h = \frac{m}{S} формула [1] ;
Заметим, что\rho S \Delta h = \frac{m}{3}– это масса керосина, вымещенного в каждый из крайних сосудов.
А всего из центрального сосуда было вымещено\frac{2}{3} m– керосина.
Центр масс вымещенного из центрального сосуда керосина находился ниже начального уровня на\Delta h .
Центр масс вымещенного в крайние сосуды керосина находится выше начального уровня на\frac{ \Delta h }{2} .
Таким образом, в общей сложности вымещенный керосин\frac{2}{3} mподнялся на\frac{3}{2} \Delta h ,а значит, потенциальная энергия керосина увеличилась на\Delta U_K = \frac{2}{3} m g \cdot \frac{3}{2} \Delta h = m g \Delta h .
Потенциальная энергия опустившейся на2 \Delta h ,гири изменилась (уменьшилась) на\Delta U_\Gamma = - 2 m g \Delta h .
Общая механическая энергия в системе изменилась (уменьшилась) на величину общего изменения потенциальной энергии в системе:\Delta U = \Delta U_K + \Delta U_\Gamma = - m g \Delta h .
Это уменьшение общей механической энергии можно объяснить только превращением части механической энергии в тепловую, с промежуточным её превращением в кинетическую, когда гидравлическая система покачивалась и "побулькивала".
Итак:\Delta Q = | \Delta U | = m g \Delta h .
Перемножим последнее уравнение на формулу [1] и получим, что:
3 \rho \Delta h \Delta Q = m g \Delta h \cdot \frac{m}{S};
3 \rho \Delta Q = \frac{ m^2 g }{S};
\Delta Q = \frac{ m^2 g }{ 3 S \rho };
Подставим заданные значения, имея ввиду, что плотность керосина\rho \approx 800кг/м³ :
Гиря продавит уровень в среднем сосуде гидравлической системы, при этом в крайних сосудах уровень керосина поднимется на некоторую дополнительную к начальному уровню высоту\Delta h .
В силу несжимаемости керосина, какой его объём отойдёт из среднего сосуда, такой же объём и поступит в крайние сосуды. Так как крайние сосуды одинаковы, то в каждый из них отойдёт половина объёма керосина, отошедшего из центрального сосуда. Объём в каждом сосуде пропорционален его высоте, поскольку сечение всех сосудов одинаковы. А это значит, что подъём уровня керосина в крайних сосудах будет вдвое меньше, чем опускание его уровня в центральном сосуде с гирей. Итак, уровень керосина в центральном сосуде опустится на2 \Delta h .
В целом, уровни керосина в крайних сосудах будут выше его опустившегося уровня в центральном сосуде на3 \Delta h .
Этот добавочный столб жидкости3 \Delta hбудет создавать такое же дополнительное давление, как и гиря, находящаяся на нижнем уровне, поскольку, в конечном счёте, вся система придёт в гидравлическое равновесие.
Давление добавочного столба жидкости : 3 \rho g \Delta h ,
Давление гири : \frac{mg}{S} ,
Значит: 3 \rho g \Delta h = \frac{mg}{S};
Значит: 3 \rho \Delta h = \frac{m}{S} формула [1] ;
Заметим, что\rho S \Delta h = \frac{m}{3}– это масса керосина, вымещенного в каждый из крайних сосудов.
А всего из центрального сосуда было вымещено\frac{2}{3} m– керосина.
Центр масс вымещенного из центрального сосуда керосина находился ниже начального уровня на\Delta h .
Центр масс вымещенного в крайние сосуды керосина находится выше начального уровня на\frac{ \Delta h }{2} .
Таким образом, в общей сложности вымещенный керосин\frac{2}{3} mподнялся на\frac{3}{2} \Delta h ,а значит, потенциальная энергия керосина увеличилась на\Delta U_K = \frac{2}{3} m g \cdot \frac{3}{2} \Delta h = m g \Delta h .
Потенциальная энергия опустившейся на2 \Delta h ,гири изменилась (уменьшилась) на\Delta U_\Gamma = - 2 m g \Delta h .
Общая механическая энергия в системе изменилась (уменьшилась) на величину общего изменения потенциальной энергии в системе:\Delta U = \Delta U_K + \Delta U_\Gamma = - m g \Delta h .
Это уменьшение общей механической энергии можно объяснить только превращением части механической энергии в тепловую, с промежуточным её превращением в кинетическую, когда гидравлическая система покачивалась и "побулькивала".
Итак:\Delta Q = | \Delta U | = m g \Delta h .
Перемножим последнее уравнение на формулу [1] и получим, что:
3 \rho \Delta h \Delta Q = m g \Delta h \cdot \frac{m}{S};
3 \rho \Delta Q = \frac{ m^2 g }{S};
\Delta Q = \frac{ m^2 g }{ 3 S \rho };
Подставим заданные значения, имея ввиду, что плотность керосина\rho \approx 800кг/м³ :
\Delta Q \approx \frac{ 4^2 \cdot 9.8 }{ 3 \cdot 0.02 \cdot 800 }Дж= \frac{ 16 \cdot 9.8 }{ 3 \cdot 16 }Дж= \frac{ 9.8 }{ 3 }Дж\approx 3.3Дж ;
О т в е т :\Delta Q \approx 3.3Дж .
Объяснение: