Надо 20
1) какое количество теплоты выделяется при охлаждении воздуха от 20 градусов цельсия до 15 градусов воздуха 20 л?
2) определить кпд тепловой машины если газ получает от нагревателя 10,4 кдж количества теплоты и совершает работу 2 кдж.
3) для энергии стальной бак массой 4 кг заменили на стальную сетку массой 1,5 кг. на сколько меньше количество теплоты потребуется для ее нагревания от 18 градусов цельсия до 918?
Объяснение:
Дано:
C₁ = 4 мкФ = 4·10⁻⁶ Ф
U₁ = 300 В
С₂ = 2 мкФ = 2·10⁻⁶ Ф
U₂ = 600 В
W - ?
1)
Находим заряд на первом конденсаторе:
q₁ = C₁·U₁ = 4·10⁻⁶·300 = 1,2·10⁻³ Кл
Находим заряд на втором конденсаторе:
q₂ = C₂·U₂ = 2·10⁻⁶·600 = 1,2·10⁻³ Кл
Поскольку конденсаторы соединены параллельно, то суммарный заряд:
q = q₁ + q₂ = 1,2·10⁻³+1,2·10⁻³ = 2,4·10⁻³ Кл
2)
Поскольку конденсаторы соединены параллельно, то емкость батареи:
C = C₁ + C₂ = (4+2)·10⁻⁶ = 6·10⁻⁶ Ф
3)
Энергия батареи:
W = q² / (2·C)
W = (2,4·10⁻³)² / (2· 6·10⁻⁶) = 0,48 Дж
1. Приступаючи до розв’язання задач з будь-якої теми, спочатку вивчіть
теоретичний матеріал за підручником, розберіться в прикладах розв’язання
типових задач.
2. Уважно прочитайте умову задачі, вникаючи в її зміст. Чітко уявіть
собі фізичне явище, процеси, які відображені умовою задачі.
3. Запишіть коротку умову задачі, вказуючи всі величини з умови
задачі та їх числові значення. Окремо позначте величини, що шукаються в
задачі. Числові значення переведіть в одиниці СІ.
4. Ретельно виконайте креслення, котре пояснює зміст задачі (в тих
випадках, коли це можливо). Є деякі задачі, що розв’язуються графічно, тоді
правильно виконане креслення буде розв’язанням задачі.
5. Згадайте, якому закону підпорядкований фізичний процес і якими
формулами він описується математично. Якщо формул декілька, співставте
величини, що входять у різні формули, із заданими величинами та тими, які
необхідно знайти.
6. На першому етапі розв’язуйте задачу в загальному вигляді, тобто
виводьте формулу, в котрій шукана величина виражена через величини,
задані в умові. Винятки із цього правила вкрай рідкі й бувають у двох
випадках: якщо формула якої-небудь проміжної величини настільки
громіздка, що обчислення цієї величини значно спрощує подальший запис
розв’язання; якщо числовий розв’язок задачі значно простіший, ніж
виведення формули.