Потенциа́льная эне́ргия {\displaystyle U({\vec {r}})} — скалярная физическая величина, представляющая собой часть полной механической энергии системы, находящейся в поле консервативных сил.
Потенциальная энергия зависит от положения материальных точек, составляющих систему, и характеризует работу, совершаемую полем при их перемещении[1]. Другое определение: потенциальная энергия — это функция координат, являющаяся слагаемым в лагранжиане системы и описывающая взаимодействие элементов системы[2].
МагнитнаяХимическаяЯдерная{\displaystyle G}Гравитационная{\displaystyle \emptyset }ВакуумаГипотетические:ТёмнаяСм. также: Закон сохранения энергии
В формулах принято обозначать потенциальную энергию буквой {\displaystyle U,} но также могут использоваться обозначения {\displaystyle \ E_{p}}, {\displaystyle \ W} и другие.
Термин «потенциальная энергия» был введен в XIX веке шотландским инженером и физиком Уильямом Ренкином.
Единицей измерения потенциальной энергии в Международной системе единиц (СИ) является джоуль, а в системе СГС — эрг.
Взаимодействие тел можно описывать либо с сил, либо (для случая консервативных сил) с потенциальной энергии как функции координат. В квантовой механике используется исключительно второй : в её уравнениях движения фигурирует потенциальная энергия взаимодействующих частиц[3].
В момент времени t = 1 с ускорения точек были одинаковы, относительная скорость точек v₂₋₁ = 3 м/с, точки находились на расстоянии 5 м друг от друга
Объяснение:
При движении координата 1-й точки изменяется по закону
x₁(t) = 1 + 7t + t² + 2t³
Скорость движения 1-й точки
v₁(t) = x' = 7 + 2t + 6t²
Ускорение движения 1-й точки
a₁(t) = v₁'(t) = 2 + 12t
Ускорение движения 2-й точки задано
a₂(t) = 8 + 6t
Момент времени t, в который ускорения точек одинаковы, определим из уравнения
2 + 12t = 8 + 6t
6t = 6
t = 1 (с)
Cкорость движения 2-й точки
v₂(t) =v₂₀ + ∫a₂(t) dt = 1 + ∫(8 + 6t) dt = 1 + 8t +3t²
В моvент времени t = 1 скорости точек
v₂(1) = 1 + 8 + 3 = 12 (м/с)
v₁(t) = 7 + 2 + 6 = 15 (м/с)
Относительная скорость
v₂₋₁ = v₁(t) - v₂(1) = 15 - 12 = 3 (м/с)
Координата 2-й точки
х₂(е) = х₂₀ + ∫v₂(t) d = ∫(1 + 8t + 3t²) dt = t + 4t² + t³
В моvент времени t = 1 координаты точек
x₁(1) = 1 + 7 + 1 + 2 = 11 (м)
х₂(1) = 1 + 4 + 1 = 6 (м)
Точки находились друг от друга на расстоянии
s₁₋₂ = 11 - 6 = 5 (м)
Потенциа́льная эне́ргия {\displaystyle U({\vec {r}})} — скалярная физическая величина, представляющая собой часть полной механической энергии системы, находящейся в поле консервативных сил.
Потенциальная энергия зависит от положения материальных точек, составляющих систему, и характеризует работу, совершаемую полем при их перемещении[1]. Другое определение: потенциальная энергия — это функция координат, являющаяся слагаемым в лагранжиане системы и описывающая взаимодействие элементов системы[2].
Виды энергии:Механическая Потенциальная
Кинетическая‹♦›ВнутренняяЭлектромагнитная Электрическая
МагнитнаяХимическаяЯдерная{\displaystyle G}Гравитационная{\displaystyle \emptyset }ВакуумаГипотетические:ТёмнаяСм. также: Закон сохранения энергии
В формулах принято обозначать потенциальную энергию буквой {\displaystyle U,} но также могут использоваться обозначения {\displaystyle \ E_{p}}, {\displaystyle \ W} и другие.
Термин «потенциальная энергия» был введен в XIX веке шотландским инженером и физиком Уильямом Ренкином.
Единицей измерения потенциальной энергии в Международной системе единиц (СИ) является джоуль, а в системе СГС — эрг.
Взаимодействие тел можно описывать либо с сил, либо (для случая консервативных сил) с потенциальной энергии как функции координат. В квантовой механике используется исключительно второй : в её уравнениях движения фигурирует потенциальная энергия взаимодействующих частиц[3].