Наиболее длинные волны видимой части спектра имеют частоту 5∙1014 Гц. Постоянная Планка равна 6,63∙10-34 Дж·с, скорость света 3∙108 м/с. Определите энергию фотонов, соответствующих этим длинам волн.
Надо чтобы на расстоянии 10 м тело поднялось с высоты h на высотуH. найдём за какое время тело преодолеет расстояние 10 м. Пусть скорость тела V. Тогда её проекция на ось х будет Vcos30°. это горизонтальная скорость и она не меняется со временем. t0=s/Vcos30° Значит в момент времени t0 тело должно быть не ниже H. В начальный момент времени вертикальная скорость тела была Vsin30° высота тела меняется по закону H(t)=h+V* sin30° *t -gt²/2 H(t0)=h+V* sin30° *t0 -gt0²/2=H V* sin30° *t0 -gt0²/2=H-h подставляем t0=s/Vcos30 V* sin30° *s/(V*cos30°) -g( s/Vcos30 )²/2=H-h s*tg30° -gs²/(2V²cos²30° )=H-h gs²/(2V²cos²30° )= s*tg30+h-H V²=(gs²/2cos²30°)/( s*tg30+h-H)=(10 м/с² *10² м²/2 *(√3/2)²)/(10м *(√3/3)+2м-6м )=(10³м³/с² *4/6)/(5,77м-4м)=377м²/с² V=19,4м/с
найдём за какое время тело преодолеет расстояние 10 м. Пусть скорость тела V. Тогда её проекция на ось х будет Vcos30°. это горизонтальная скорость и она не меняется со временем. t0=s/Vcos30°
Значит в момент времени t0 тело должно быть не ниже H.
В начальный момент времени вертикальная скорость тела была Vsin30°
высота тела меняется по закону
H(t)=h+V* sin30° *t -gt²/2
H(t0)=h+V* sin30° *t0 -gt0²/2=H
V* sin30° *t0 -gt0²/2=H-h
подставляем t0=s/Vcos30
V* sin30° *s/(V*cos30°) -g( s/Vcos30 )²/2=H-h
s*tg30° -gs²/(2V²cos²30° )=H-h
gs²/(2V²cos²30° )= s*tg30+h-H
V²=(gs²/2cos²30°)/( s*tg30+h-H)=(10 м/с² *10² м²/2 *(√3/2)²)/(10м *(√3/3)+2м-6м )=(10³м³/с² *4/6)/(5,77м-4м)=377м²/с²
V=19,4м/с
Объяснение:
Дано:
ε = 3
ρ / ρ₁ - ?
1)
Пусть сила тяжести шарика равна m·g
Сила притяжения шарика к пластине F.
Шарик в равновесии, поэтому запишем
m·g = F
ρ·g·V = F (1)
2)
Заливаем диэлектрик.
Сила тяжести не изменилась.
Сила притяжения стала в ε раз меньше:
F₁ = F / ε.
Кроме того появляется и выталкивающая сила:
Fₐ = ρ₁·g·V
Но шарик по прежнему в равновесии:
m·g = F / ε + ρ₁·g·V (2)
Тогда, учитывая (1), имеем:
ρ·g·V = ρ·g·V / ε + ρ₁·g·V
ρ = ρ / ε + ρ₁
ρ· (1 - 1/ε) = ρ₁
ρ / ρ₁ = ε / (ε - 1)
ρ / ρ₁ = 3 / 2