Минимальная кинетическая энергия будет в верхней точке траектории (в вершине параболы), в этой точке вертикальная составляющая скорости (проекция скорости на вертикальную ось) равна нулю, и, как известно горизонтальная составляющая скорости - постоянна. максимальная кинетическая энергия будет или в начальный момент, или в момент падения. Будем считать, что тело брошено с поверхности земли. Имеем. E_k_min = (m/2)*(v_x)^2; E_k_max = (m/2)*(v0)^2; (v0)^2 = (v0_y)^2 + (v_x)^2; по условию E_k_max = 2*E_k_min; (m/2)*( (v0_y)^2 + (v_x)^2 ) = 2*(m/2)*(v_x)^2; (v0_y)^2 + (v_x)^2 = 2*(v_x)^2; (v0_y)^2 = (v_x)^2; v0_y = v_x; итак: v0_y = v_x; tg(a) = v0_y/v_x = 1; a = arctg(1) = 45 градусов.
•по определению кпд: n = q/qзатр, где qзатр - затраченная теплота на нагрев куска меди (будем считать далее, что температура t2 не является температурой плавления меди) • медь нагревается за счет горения угля. значит: ○ n = q/(q m1) ○ m1 = q/(n q) • теплота q расходуется на нагрев куска меди: q = c m2 (t2 - t1) (1) • далее эта же теплота q пойдет на плавление льда (его температура по условию 0 °с, поэтому плавление начнется сразу же): q = λ m3 (2) • приравняв уравнения (1) и (2), находим: ○ t2 = t1 + ((λ m3)/(c m2)) • подставляем уравнение в выражение (1). получаем: ○ t1 = (q - λ m3)/(m2 - m1)
максимальная кинетическая энергия будет или в начальный момент, или в момент падения. Будем считать, что тело брошено с поверхности земли. Имеем.
E_k_min = (m/2)*(v_x)^2;
E_k_max = (m/2)*(v0)^2;
(v0)^2 = (v0_y)^2 + (v_x)^2;
по условию E_k_max = 2*E_k_min;
(m/2)*( (v0_y)^2 + (v_x)^2 ) = 2*(m/2)*(v_x)^2;
(v0_y)^2 + (v_x)^2 = 2*(v_x)^2;
(v0_y)^2 = (v_x)^2;
v0_y = v_x;
итак: v0_y = v_x;
tg(a) = v0_y/v_x = 1;
a = arctg(1) = 45 градусов.