Напряжение на обкладках конденсатора идеального колебательного контура с течением времени изменяется по формуле U =0,1 · cos1000πt. Определите индуктивность L катушки этого контура с подробным решением.
Угол падения луча на плоское зеркало 35 градусов. Каким будет угол между падающим и отраженным лучами, если угол падения увеличили на 25 градусов?
Отчёт градусов будем производить относительно нормали проведенной к плоскости на которую попадает луч
( для большей ясности см. рисунок )
В начале луч падает под углом 35° затем мы угол падения увеличиваем на 25° то есть угол падения составит 60° ( Т.к. 25° + 35° = 60° ) но мы знаем то что угол падения луча равен его углу отражения
Поэтому угол между падающим и отраженным лучами равен 120°
Решение: Средняя скорость автомобиля равна: Vср.=(S1+S2)/(t1+t2) Расстояние первой части пути, проехавшего автомобиля составляет: S=V*t S1=4v/5*t1=4v*t1/5 Расстояние второй части пути, проехавшего автомобиля составляет: S2=2v*t2 А так как средняя скорость на всём пути равна 2v, составим уравнение: (4v*t1/5+2v*t2)/(t1+t2)=v 4v*t1/5+2v*t2=v*(t1+t2) приведём уравнение к общему знаменателю 5 4v*t1+5*2v*t2=5*v*(t1+t2) v*(4t1+10t2)=v*(5t1+5t2) Разделим левую и правую части уравнения на (v) 4t1+10t2=5t1+5t2 4t1-5t1=5t2-10t2 -t1=-5t2 умножим левую и правую части уравнения на (-1) t1=5t2 Отсюда следует, что соотношение времени равно: t1/t2=1/5
120 градусів
Объяснение:
Угол падения луча на плоское зеркало 35 градусов. Каким будет угол между падающим и отраженным лучами, если угол падения увеличили на 25 градусов?
Отчёт градусов будем производить относительно нормали проведенной к плоскости на которую попадает луч
( для большей ясности см. рисунок )
В начале луч падает под углом 35° затем мы угол падения увеличиваем на 25° то есть угол падения составит 60° ( Т.к. 25° + 35° = 60° ) но мы знаем то что угол падения луча равен его углу отражения
Поэтому угол между падающим и отраженным лучами равен 120°
( 60 ° + 60° = 120° )
Средняя скорость автомобиля равна:
Vср.=(S1+S2)/(t1+t2)
Расстояние первой части пути, проехавшего автомобиля составляет: S=V*t
S1=4v/5*t1=4v*t1/5
Расстояние второй части пути, проехавшего автомобиля составляет:
S2=2v*t2
А так как средняя скорость на всём пути равна 2v, составим уравнение:
(4v*t1/5+2v*t2)/(t1+t2)=v
4v*t1/5+2v*t2=v*(t1+t2) приведём уравнение к общему знаменателю 5
4v*t1+5*2v*t2=5*v*(t1+t2)
v*(4t1+10t2)=v*(5t1+5t2) Разделим левую и правую части уравнения на (v)
4t1+10t2=5t1+5t2
4t1-5t1=5t2-10t2
-t1=-5t2 умножим левую и правую части уравнения на (-1)
t1=5t2
Отсюда следует, что соотношение времени равно:
t1/t2=1/5