Альпинист массой m = 80 кг спускается с отвесной скалы, скользя по вертикальной веревке с ускорением a = 0,4 м/с2, направленным вниз. Пренебрегая массой веревки, определите силу T ее натяжения.
Решение
Согласно третьему закону Ньютона альпинист действует на веревку с такой же по модулю силой, с какой веревка действует на альпиниста. На альпиниста действуют две силы: сила тяжести  направленная вертикально вниз, и упругая сила  веревки, направленная вверх. По второму закону Ньютона
ma = mg – T.
Следовательно, сила натяжения веревки T равна
T = m(g – a) = 752 Н.
Если бы альпинист спускался по веревке с постоянной скоростью или неподвижно висел на ней, то сила T' натяжения была бы равна
В центре треугольника напряженность равна геометрической сумме напряженностей, создаваемых зарядами 1, 2 и 3.
Заряды по модулю равны, поэтому:
E1 = E2 = E3 = 3k|q| / a2, так как a(√3) / 3 — расстояние от вершины треугольника до центра треугольника О.
Напряженность поля в точке О: E = E3 + E1 cos 60° + E2 cos 60° = 2E1 = 6k|q| / a2.
Потенциал в точке O равен алгебраической сумме потенциалов, создаваемых зарядами 1, 2 и 3:
? = ?1 + ?2 + ?3 = k (√3) (|q| + |q| + |q|) / a = 3 (√3) k|q| / a
Объяснение:
Альпинист массой m = 80 кг спускается с отвесной скалы, скользя по вертикальной веревке с ускорением a = 0,4 м/с2, направленным вниз. Пренебрегая массой веревки, определите силу T ее натяжения.
Решение
Согласно третьему закону Ньютона альпинист действует на веревку с такой же по модулю силой, с какой веревка действует на альпиниста. На альпиниста действуют две силы: сила тяжести  направленная вертикально вниз, и упругая сила  веревки, направленная вверх. По второму закону Ньютона
ma = mg – T.
Следовательно, сила натяжения веревки T равна
T = m(g – a) = 752 Н.
Если бы альпинист спускался по веревке с постоянной скоростью или неподвижно висел на ней, то сила T' натяжения была бы равна
T' = mg = 784 Н.