Ну что, Татьяна, давай рассуждать логически. Ща сам тоже буду думать, пока пишу. По ходу скорость платформ из 9 км/ч переведём в 2,5 м/с.
Давай предположим, что сначала платформа двигалась вправо (в направлении на "+"), и если верно понимаю условие, выстрел был сделан в эту же сторону, то есть вправо, так?
Сначала посчитаем начальный импульс платформы со снарядом. Это будет p0 = (М+м)*v1. После того, как выстрел сделан, масса платформы стала без снаряда, то есть просто М; а снаряд унёс с неё импульс m*v2.
По закону сохранения импульса, новый импульс платформы станет p2 = p0 - m*v2. Соберём в кучку, будет p2 = (M+m)*v1 - m*v2. Расшифруем, будет p2 = M*v1 + m*v1 - m*v2. Подставим соотношение М/м = 200, и получим p2 = М*v1 + M/200*v1 - M/200*v2 = M * ( v1 + 1/200*v1 - 1/200*v2) = M * ( 2,5 + 1/200*2,5 - 1/200*800). У меня получилось M * (-1,4875). Внезапно знак стал минус, это означает, что платформа после выстрела поехала в обратную сторону. А её скорость равна как раз найденный импульс, делить на массу, то есть именно v = -1,4875 м/с.
Есть ответ на первый вопрос. Перейдём ко второму. Тут надо найти силу трения, а она равна весу платформы, умножить на коэфф.трения. Fтр = М * g * мю.
Итак, платформа поехала влево с начальной скоростью v, и на неё действует постоянная сила Fтр, значит движение имеет постоянное отрицательное ускорение а = Fтр / М = (М * g * мю ) / М = g * мю.
Остался последний шаг - подставляем в формулу "без времени" s = v^2 / (2 * a ) = (1,4875)^2 / (2 * g * мю ) = 1,4875^2 / (2*9,81*0,07) = 1,611 м. Точнее, если с учётом знака (платформа-то едет влево), то расстояние s = -1,611 м.
Ну, у меня так получилось. Проверь. Может где ошибся.
Р = 20 кН = 20000 Н. ρл = 900 кг/м^3. ρв = 1000 кг/м^3. Vнад водой - ? Fарх - ? На льдину действуют две силы: сила тяжести m * g, вертикально вниз, и выталкивающая сила Архимеда Fарх, вертикально вверх. Так как льдина плавает то эти силы равны между собой: m*g = Fарх. Вес тела Р равен силе тяжести m*g. Р = m *g. Fарх = 20000 Н. Массу тела m распишем через плотность льда ρл и объем тела V: m = ρл * V. m *g = ρл * V *g. Выталкивающая сила Архимеда определяется формулой: Fарх = ρв *g* Vпог. Где ρв - плотность жидкости, в которое погружено тело, g - ускорение свободного падения, Vпог - объем погруженной части тела в жидкость. ρл * V *g = ρв *g* Vпог. ρл * V = ρв * Vпог. Vпог / V = ρл / ρв. Vпог / V = 900 кг/м^3 / 1000 кг/м^3 = 0,9. Под водой находится 9/10 частей или 90 % всего объема льдины. Vпог = 0,9 * V. Vнад водой = V - Vпог = V - 0,9 * V = 0,1 * V. ответ: на поверхности находится 1/10 или 10 % льдины.
Давай предположим, что сначала платформа двигалась вправо (в направлении на "+"), и если верно понимаю условие, выстрел был сделан в эту же сторону, то есть вправо, так?
Сначала посчитаем начальный импульс платформы со снарядом. Это будет p0 = (М+м)*v1. После того, как выстрел сделан, масса платформы стала без снаряда, то есть просто М; а снаряд унёс с неё импульс m*v2.
По закону сохранения импульса, новый импульс платформы станет p2 = p0 - m*v2. Соберём в кучку, будет p2 = (M+m)*v1 - m*v2. Расшифруем, будет p2 = M*v1 + m*v1 - m*v2. Подставим соотношение М/м = 200, и получим p2 = М*v1 + M/200*v1 - M/200*v2 = M * ( v1 + 1/200*v1 - 1/200*v2) = M * ( 2,5 + 1/200*2,5 - 1/200*800). У меня получилось M * (-1,4875). Внезапно знак стал минус, это означает, что платформа после выстрела поехала в обратную сторону. А её скорость равна как раз найденный импульс, делить на массу, то есть именно v = -1,4875 м/с.
Есть ответ на первый вопрос. Перейдём ко второму. Тут надо найти силу трения, а она равна весу платформы, умножить на коэфф.трения. Fтр = М * g * мю.
Итак, платформа поехала влево с начальной скоростью v, и на неё действует постоянная сила Fтр, значит движение имеет постоянное отрицательное ускорение а = Fтр / М = (М * g * мю ) / М = g * мю.
Остался последний шаг - подставляем в формулу "без времени" s = v^2 / (2 * a ) = (1,4875)^2 / (2 * g * мю ) = 1,4875^2 / (2*9,81*0,07) = 1,611 м. Точнее, если с учётом знака (платформа-то едет влево), то расстояние s = -1,611 м.
Ну, у меня так получилось. Проверь. Может где ошибся.
ρл = 900 кг/м^3.
ρв = 1000 кг/м^3.
Vнад водой - ?
Fарх - ?
На льдину действуют две силы: сила тяжести m * g, вертикально вниз, и выталкивающая сила Архимеда Fарх, вертикально вверх. Так как льдина плавает то эти силы равны между собой: m*g = Fарх.
Вес тела Р равен силе тяжести m*g.
Р = m *g.
Fарх = 20000 Н.
Массу тела m распишем через плотность льда ρл и объем тела V: m = ρл * V.
m *g = ρл * V *g.
Выталкивающая сила Архимеда определяется формулой: Fарх = ρв *g* Vпог. Где ρв - плотность жидкости, в которое погружено тело, g - ускорение свободного падения, Vпог - объем погруженной части тела в жидкость.
ρл * V *g = ρв *g* Vпог.
ρл * V = ρв * Vпог.
Vпог / V = ρл / ρв.
Vпог / V = 900 кг/м^3 / 1000 кг/м^3 = 0,9.
Под водой находится 9/10 частей или 90 % всего объема льдины.
Vпог = 0,9 * V.
Vнад водой = V - Vпог = V - 0,9 * V = 0,1 * V.
ответ: на поверхности находится 1/10 или 10 % льдины.