длина волны, скорость волны, период колебаний, частота колебаний.
Объяснение:
Кроме скорости, важной характеристикой волны является длина волны. Длиной волны называется расстояние, на которое распространяется волна за время, равное периоду колебаний в ней. ИЛИ Расстояние между ближайшими друг к другу точками, колеблющимися в одинаковых фазах, называется длиной волны.
Она равна расстоянию между соседними гребнями или впадинами в поперечной волне и между соседними сгущениями или разрежениями в продольной волне.
Поскольку скорость волны - величина постоянная (для данной среды), то пройденное волной расстояние равно произведению скорости на время ее распространения. Таким образом, чтобы найти длину волны, надо скорость волны умножить на период колебаний в ней: λ=υT. Так как период Т и частота v связаны соотношением T = 1 / v, то скорость волны:
υ = λ / Т = λ v
Полученная формула показывает, что скорость волны равна произведению длины волны на частоту колебаний в ней.
Частота колебаний в волне совпадает с частотой колебаний источника (так как колебания частиц среды являются вынужденными) и не зависит от свойств среды, в которой распространяется волна. При переходе волны из одной среды в другую ее частота не изменяется, меняются лишь скорость и длина волны.
Скорость упругой волны тем больше, чем плотнее среда и чем выше температура.
Скорость в неподвижной системе отсчёта ( v2 ) равно векторной сумме его скорости относительно движущейся системы отсчёта ( v1 ) и скорости движущегося системы отсчета относительно неподвижной ( v12 )
За неподвижную систему отсчёта примем Землю , а за движущиеся системы отсчета один из автомобилей тогда
v2 = v1 + v12 - в векторном виде
Ох : v2 = v1 + v12
отсюда
v1 = v2 - v12
v1 = 90 - 60 = 30 ( км/ч ) - скорость первого автомобиля относительно второго
v1' = 60 - 90 = -30 ( км/ч ) - скорость второго автомобиля относительно первого
Величины, характеризующие волну:
длина волны, скорость волны, период колебаний, частота колебаний.
Объяснение:
Кроме скорости, важной характеристикой волны является длина волны. Длиной волны называется расстояние, на которое распространяется волна за время, равное периоду колебаний в ней. ИЛИ Расстояние между ближайшими друг к другу точками, колеблющимися в одинаковых фазах, называется длиной волны.
Она равна расстоянию между соседними гребнями или впадинами в поперечной волне и между соседними сгущениями или разрежениями в продольной волне.
Поскольку скорость волны - величина постоянная (для данной среды), то пройденное волной расстояние равно произведению скорости на время ее распространения. Таким образом, чтобы найти длину волны, надо скорость волны умножить на период колебаний в ней: λ=υT. Так как период Т и частота v связаны соотношением T = 1 / v, то скорость волны:
υ = λ / Т = λ v
Полученная формула показывает, что скорость волны равна произведению длины волны на частоту колебаний в ней.
Частота колебаний в волне совпадает с частотой колебаний источника (так как колебания частиц среды являются вынужденными) и не зависит от свойств среды, в которой распространяется волна. При переходе волны из одной среды в другую ее частота не изменяется, меняются лишь скорость и длина волны.
Скорость упругой волны тем больше, чем плотнее среда и чем выше температура.
Объяснение:
Согласно закону сложения скоростей Галилея
Скорость в неподвижной системе отсчёта ( v2 ) равно векторной сумме его скорости относительно движущейся системы отсчёта ( v1 ) и скорости движущегося системы отсчета относительно неподвижной ( v12 )
За неподвижную систему отсчёта примем Землю , а за движущиеся системы отсчета один из автомобилей тогда
v2 = v1 + v12 - в векторном виде
Ох : v2 = v1 + v12
отсюда
v1 = v2 - v12
v1 = 90 - 60 = 30 ( км/ч ) - скорость первого автомобиля относительно второго
v1' = 60 - 90 = -30 ( км/ч ) - скорость второго автомобиля относительно первого