Согласно справочным данным в трубе диаметром 0,1 м коэффициенты местных сопротивлений для вентиля и выхода из трубы составляют соответственно 4,1 и 1.
Значение скоростного напора определяется по соотношению:
w2/(2·g) = 2,02/(2·9,81) = 0,204 м
Потери напора воды на местные сопротивления составят:
∑ζМС·[w2/(2·g)] = (4,1+1)·0,204 = 1,04 м
Суммарные потери напора носителя на сопротивление трению и местные сопротивления рассчитываются по уравнению общего напора для насоса (геометрическая высота Hг по условиям задачи равна 0):
hп = H - (p2-p1)/(ρ·g) - = 8 - ((1-1)·105)/(1000·9,81) - 0 = 8 м
Полученное значение потери напора носителя на трение составят:
8-1,04 = 6,96 м
Рассчитаем значение числа Рейнольдса для заданных условий течения потока (динамическая вязкость воды принимается равной 1·10-3 Па·с, плотность воды – 1000 кг/м3):
Re = (w·d·ρ)/μ = (2,0·0,1·1000)/(1·10-3) = 200000
Согласно рассчитанному значению Re, причем 2320 <Re< 10/e, по справочной таблице рассчитаем коэффициент трения (для режима гладкого течения):
λ = 0,316/Re0,25 = 0,316/2000000,25 = 0,015
Преобразуем уравнение и найдем требуемую длину трубопровода из расчетной формулы потерь напора на трение:
l = (Hоб·d) / (λ·[w2/(2g)]) = (6,96·0,1) / (0,016·0,204) = 213,235 м
ответ:требуемая длина трубопровода составит 213,235 м.
Корпускулярно-волновой дуализм (или квантово-волновой дуализм) — свойство природы, состоящее в том, что материальные микроскопические объекты могут при одних условиях проявлять свойства классических волн, а при других — свойства классических частиц.
Типичные примеры объектов, проявляющих двойственное корпускулярно-волновое поведение — электроны и свет; принцип справедлив и для более крупных объектов, но, как правило, чем объект массивнее, тем в меньшей степени проявляются его волновые свойства[4] (речь здесь не идёт о коллективном волновом поведении многих частиц, например, волны на поверхности жидкости).
Идея о корпускулярно-волновом дуализме была использована при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. В действительности квантовые объекты не являются ни классическими волнами, ни классическими частицами, проявляя свойства первых или вторых лишь в зависимости от условий экспериментов, которые над ними проводятся. Корпускулярно-волновой дуализм необъясним в рамках классической физики и может быть истолкован лишь в квантовой механике[5].
Дальнейшим развитием представлений о корпускулярно-волновом дуализме стала концепция квантованных полей в квантовой теории поля.
Объяснение:
Мир квантовой физики трудно понять с точки зрения здравого смысла. Материя может быть одновременно сконцентрирована в одной точке и размазана в Тому и другому имеются экспериментальные доказательства, но есть свидетельства ещё более загадочных явлений.
Корпускулярно-волновой дуализм
Фотон обладает одновременно свойствами частицы и волны. Это явление обозначается термином «корпускулярно-волновой дуализм». Великий Исаак Ньютон считал, что свет является потоком частиц, но уже его современник Христиан Гюйгенс находил у света волновые свойства. Борьба двух теорий продолжалась практически до ХХ века, когда выяснилось, что они обе справедливы.
Эксперимент Юнга
Чтобы доказать волновую природу света в 1803 году английский учёный Томас Юнг провёл свой знаменитый эксперимент с двумя щелями. На самом деле щелей было три. Свет от источника направляется на щель, прорезанную в металлическом листе, и таким образом, из него вырезается один узкий луч. Это нужно для того, чтобы создать два когерентных источника излучения. В другом таком же листе, прорезаются две параллельные щели с ровными краями. Ширина щелей сравнима с длиной световой волны. Перпендикулярно плоскости второго листа на них посылается расходящийся конус света от первой щели.
Исходные данные:
Скорость потока жидкости W = 2,0 м/с;
диаметр трубы d = 100 мм;
общий напор Н = 8 м;
относительная шероховатость 4·10-5.
Решение задачи:
Согласно справочным данным в трубе диаметром 0,1 м коэффициенты местных сопротивлений для вентиля и выхода из трубы составляют соответственно 4,1 и 1.
Значение скоростного напора определяется по соотношению:
w2/(2·g) = 2,02/(2·9,81) = 0,204 м
Потери напора воды на местные сопротивления составят:
∑ζМС·[w2/(2·g)] = (4,1+1)·0,204 = 1,04 м
Суммарные потери напора носителя на сопротивление трению и местные сопротивления рассчитываются по уравнению общего напора для насоса (геометрическая высота Hг по условиям задачи равна 0):
hп = H - (p2-p1)/(ρ·g) - = 8 - ((1-1)·105)/(1000·9,81) - 0 = 8 м
Полученное значение потери напора носителя на трение составят:
8-1,04 = 6,96 м
Рассчитаем значение числа Рейнольдса для заданных условий течения потока (динамическая вязкость воды принимается равной 1·10-3 Па·с, плотность воды – 1000 кг/м3):
Re = (w·d·ρ)/μ = (2,0·0,1·1000)/(1·10-3) = 200000
Согласно рассчитанному значению Re, причем 2320 <Re< 10/e, по справочной таблице рассчитаем коэффициент трения (для режима гладкого течения):
λ = 0,316/Re0,25 = 0,316/2000000,25 = 0,015
Преобразуем уравнение и найдем требуемую длину трубопровода из расчетной формулы потерь напора на трение:
l = (Hоб·d) / (λ·[w2/(2g)]) = (6,96·0,1) / (0,016·0,204) = 213,235 м
ответ:требуемая длина трубопровода составит 213,235 м.
Корпускулярно-волновой дуализм (или квантово-волновой дуализм) — свойство природы, состоящее в том, что материальные микроскопические объекты могут при одних условиях проявлять свойства классических волн, а при других — свойства классических частиц.
Типичные примеры объектов, проявляющих двойственное корпускулярно-волновое поведение — электроны и свет; принцип справедлив и для более крупных объектов, но, как правило, чем объект массивнее, тем в меньшей степени проявляются его волновые свойства[4] (речь здесь не идёт о коллективном волновом поведении многих частиц, например, волны на поверхности жидкости).
Идея о корпускулярно-волновом дуализме была использована при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. В действительности квантовые объекты не являются ни классическими волнами, ни классическими частицами, проявляя свойства первых или вторых лишь в зависимости от условий экспериментов, которые над ними проводятся. Корпускулярно-волновой дуализм необъясним в рамках классической физики и может быть истолкован лишь в квантовой механике[5].
Дальнейшим развитием представлений о корпускулярно-волновом дуализме стала концепция квантованных полей в квантовой теории поля.
Объяснение:
Мир квантовой физики трудно понять с точки зрения здравого смысла. Материя может быть одновременно сконцентрирована в одной точке и размазана в Тому и другому имеются экспериментальные доказательства, но есть свидетельства ещё более загадочных явлений.
Корпускулярно-волновой дуализм
Фотон обладает одновременно свойствами частицы и волны. Это явление обозначается термином «корпускулярно-волновой дуализм». Великий Исаак Ньютон считал, что свет является потоком частиц, но уже его современник Христиан Гюйгенс находил у света волновые свойства. Борьба двух теорий продолжалась практически до ХХ века, когда выяснилось, что они обе справедливы.
Эксперимент Юнга
Чтобы доказать волновую природу света в 1803 году английский учёный Томас Юнг провёл свой знаменитый эксперимент с двумя щелями. На самом деле щелей было три. Свет от источника направляется на щель, прорезанную в металлическом листе, и таким образом, из него вырезается один узкий луч. Это нужно для того, чтобы создать два когерентных источника излучения. В другом таком же листе, прорезаются две параллельные щели с ровными краями. Ширина щелей сравнима с длиной световой волны. Перпендикулярно плоскости второго листа на них посылается расходящийся конус света от первой щели.