Пусть масса вагона равна М. Система движется, как целое, поэтому ускорение первого и второго вагонов одинаковое, пусть оно равно а. Силу трения можно не учитывать, она одинакова для первого и второго вагонов. Пусть между локомотивом и первым вагоном сила натяжения равна Т₁, между первым и вторым вагонами Т₂. Тогда II з-н Ньютона в проекции на ось ОХ, направление которой совпадает с направлением движения запишется для первого вагона так: Ма = Т₁ - Т₂ А для второго так: Ма = Т₂ Решая эту простенькую систему получим, что Т₁ = 2Ма; Т₂ = Ма. Отсюда Т₁/Т₂ = 2.
Запишем формулу кинетической энергии в малекулярной физике . Нам неизвестна температура, её мы выражаем из уравнения Менделеева-Клайперона ⇒ из данной формулы выражаем температуру ⇒ подставив данную формулу в формулу кинетической энергии
R - универсальная газовая постоянная = 8,31 Дж/моль*К.
Силу трения можно не учитывать, она одинакова для первого и второго вагонов. Пусть между локомотивом и первым вагоном сила натяжения равна Т₁, между первым и вторым вагонами Т₂.
Тогда II з-н Ньютона в проекции на ось ОХ, направление которой совпадает с направлением движения запишется для первого вагона так: Ма = Т₁ - Т₂
А для второго так: Ма = Т₂
Решая эту простенькую систему получим, что Т₁ = 2Ма; Т₂ = Ма.
Отсюда Т₁/Т₂ = 2.
Запишем формулу кинетической энергии в малекулярной физике . Нам неизвестна температура, её мы выражаем из уравнения Менделеева-Клайперона ⇒ из данной формулы выражаем температуру ⇒ подставив данную формулу в формулу кинетической энергии
R - универсальная газовая постоянная = 8,31 Дж/моль*К.
k - постоянная Больцмана = 1,38*10⁻²³ Дж/К.
V - объём = 1 м³.
p - давление = 1,5*10⁵ Па.
N - число малекул = 2*10²⁵.
Na - число авагадро = 6*10²³ моль₋₁
Подставляем численные данные и вычисляем ⇒
Джоуль.
ответ: Дж.