No10. Два провідника, опір яких 40 Ом і 80 Ом, з'єднують послідовно і підключають до джерела електричної енергії на 5 хв. У першому виділилося 72 Дж теплоти. Яка кількість енергії виділилося в другому провіднику за цей же час?
Ну что, Татьяна, давай рассуждать логически. Ща сам тоже буду думать, пока пишу. По ходу скорость платформ из 9 км/ч переведём в 2,5 м/с.
Давай предположим, что сначала платформа двигалась вправо (в направлении на "+"), и если верно понимаю условие, выстрел был сделан в эту же сторону, то есть вправо, так?
Сначала посчитаем начальный импульс платформы со снарядом. Это будет p0 = (М+м)*v1. После того, как выстрел сделан, масса платформы стала без снаряда, то есть просто М; а снаряд унёс с неё импульс m*v2.
По закону сохранения импульса, новый импульс платформы станет p2 = p0 - m*v2. Соберём в кучку, будет p2 = (M+m)*v1 - m*v2. Расшифруем, будет p2 = M*v1 + m*v1 - m*v2. Подставим соотношение М/м = 200, и получим p2 = М*v1 + M/200*v1 - M/200*v2 = M * ( v1 + 1/200*v1 - 1/200*v2) = M * ( 2,5 + 1/200*2,5 - 1/200*800). У меня получилось M * (-1,4875). Внезапно знак стал минус, это означает, что платформа после выстрела поехала в обратную сторону. А её скорость равна как раз найденный импульс, делить на массу, то есть именно v = -1,4875 м/с.
Есть ответ на первый вопрос. Перейдём ко второму. Тут надо найти силу трения, а она равна весу платформы, умножить на коэфф.трения. Fтр = М * g * мю.
Итак, платформа поехала влево с начальной скоростью v, и на неё действует постоянная сила Fтр, значит движение имеет постоянное отрицательное ускорение а = Fтр / М = (М * g * мю ) / М = g * мю.
Остался последний шаг - подставляем в формулу "без времени" s = v^2 / (2 * a ) = (1,4875)^2 / (2 * g * мю ) = 1,4875^2 / (2*9,81*0,07) = 1,611 м. Точнее, если с учётом знака (платформа-то едет влево), то расстояние s = -1,611 м.
Ну, у меня так получилось. Проверь. Может где ошибся.
надеюсь провельно вот
1.
Вычисли массу ядра изотопа Pd. Известно, что нейтронов в ядре изотопа на k = 2меньше, чем протонов. Определи зарядовое и массовое число изотопа.
Массу одного нуклона можно принять равной m1 = 1,67⋅10−27 кг
(Массу вычисли с точностью до сотых).
ответ: ядро изотопа [дробь ]Pd имеет массу m = ? кг.
2. Вычисли удельную энергию связи ядра изотопа азота N715, если дефект массы ядра иона
Δm= 0,12013 а. е. м.
(ответ запиши с точностью до сотых).
ответ: f = МэВ.
3. Определи правильный вариант.
Массовое число близко к массе ядра, выраженной в
а. е. м.
кг
МэВ
мг
4. Определи, чему равны зарядовое и массовое число изотопа B59.
A — [массовое/зарядовое]
число, A=;
Z — [массовое/зарядовое]
число, Z=.
5. Вычисли массу ядра изотопа I. Известно, что нейтронов в ядре изотопа на k = 3больше, чем протонов. Определи зарядовое и массовое число изотопа.
Массу одного нуклона можно принять равной m1 = 1,67⋅10−27 кг
(Массу вычисли с точностью до сотых).
ответ: ядро изотопа [дробь] I , имеет массу m = ? кг.
6. Вычислите энергию связи нуклонов в ядре атома изотопа фтора F916.
Масса ядра изотопа фтора равна m = 16,011467 а. е. м.
Масса свободного протона равна mp = 1,00728 а. е. м.
Масса свободного нейтрона равна mn = 1,00866 а. е. м.
(ответ запиши с точностью до десятых).
ответ: ΔE = МэВ.
Объяснение:
Давай предположим, что сначала платформа двигалась вправо (в направлении на "+"), и если верно понимаю условие, выстрел был сделан в эту же сторону, то есть вправо, так?
Сначала посчитаем начальный импульс платформы со снарядом. Это будет p0 = (М+м)*v1. После того, как выстрел сделан, масса платформы стала без снаряда, то есть просто М; а снаряд унёс с неё импульс m*v2.
По закону сохранения импульса, новый импульс платформы станет p2 = p0 - m*v2. Соберём в кучку, будет p2 = (M+m)*v1 - m*v2. Расшифруем, будет p2 = M*v1 + m*v1 - m*v2. Подставим соотношение М/м = 200, и получим p2 = М*v1 + M/200*v1 - M/200*v2 = M * ( v1 + 1/200*v1 - 1/200*v2) = M * ( 2,5 + 1/200*2,5 - 1/200*800). У меня получилось M * (-1,4875). Внезапно знак стал минус, это означает, что платформа после выстрела поехала в обратную сторону. А её скорость равна как раз найденный импульс, делить на массу, то есть именно v = -1,4875 м/с.
Есть ответ на первый вопрос. Перейдём ко второму. Тут надо найти силу трения, а она равна весу платформы, умножить на коэфф.трения. Fтр = М * g * мю.
Итак, платформа поехала влево с начальной скоростью v, и на неё действует постоянная сила Fтр, значит движение имеет постоянное отрицательное ускорение а = Fтр / М = (М * g * мю ) / М = g * мю.
Остался последний шаг - подставляем в формулу "без времени" s = v^2 / (2 * a ) = (1,4875)^2 / (2 * g * мю ) = 1,4875^2 / (2*9,81*0,07) = 1,611 м. Точнее, если с учётом знака (платформа-то едет влево), то расстояние s = -1,611 м.
Ну, у меня так получилось. Проверь. Может где ошибся.