В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
лох251
лох251
29.03.2023 20:06 •  Физика

НУЖНО В схеме на рис. батареи имеют ЭДС E1 = 23 В; E2 = 27 В; сопротивления R1 = 23 Ом, R2 = 22 Ом, R3 = 22 Ом, R4 = 24 Ом. Найти токи, протекающие через резисторы.​


НУЖНО В схеме на рис. батареи имеют ЭДС E1 = 23 В; E2 = 27 В; сопротивления R1 = 23 Ом, R2 = 22 Ом,

Показать ответ
Ответ:
cyrkunova56
cyrkunova56
19.12.2021 06:14
Для решения данной задачи нам понадобится использовать формулу для расчета изменения температуры при смешении двух разнотемпературных веществ:

\(m_1 \cdot c_1 \cdot T_1 + m_2 \cdot c_2 \cdot T_2 = (m_1 + m_2) \cdot c \cdot T\)

где:
\(m_1\) и \(m_2\) - массы первого и второго веществ соответственно,
\(c_1\) и \(c_2\) - удельные теплоемкости первого и второго веществ соответственно,
\(T_1\) и \(T_2\) - начальные температуры первого и второго веществ соответственно,
\(c\) - удельная теплоемкость смеси,
\(T\) - установившаяся температура смеси.

В нашем случае первое вещество - вода объемом 30 л при температуре 0 градусов Цельсия, а второе вещество - водяной пар массой 1,8 кг при температуре 100 градусов Цельсия. Нам нужно найти установившуюся температуру смеси.

Теперь рассмотрим каждый элемент формулы:

1. Масса первого вещества равна массе воды в сосуде, а масса второго вещества равна массе водяного пара. В задаче даны эти значения - первое вещество имеет массу 30 л, а второе вещество имеет массу 1,8 кг.

2. Удельная теплоемкость воды обычно составляет около 4,18 Дж/(градус Цельсия·г), а для водяного пара приближенно 2,02 Дж/(градус Цельсия·г).

3. Начальная температура первого вещества задана в задаче - 0 градусов Цельсия, а второе вещество имеет температуру 100 градусов Цельсия.

4. Установившаяся температура смеси является искомой величиной.

Подставим значения в формулу:

\(30 \cdot 4,18 \cdot 0 + 1,8 \cdot 2,02 \cdot 100 = (30 + 1,8) \cdot c \cdot T\)

\(0 + 364,36 = 31,8 \cdot c \cdot T\)

Теперь разделим оба выражения на \(31,8 \cdot c\):

\(\frac{364,36}{31,8 \cdot c} = T\)

Таким образом, чтобы найти установившуюся температуру смеси, нам нужно знать удельную теплоемкость смеси \(c\) (в данном случае это будет удельная теплоемкость смеси воды и водяного пара) и провести соответствующие вычисления. Данная задача не предоставляет необходимую информацию для вычисления удельной теплоемкости смеси и, следовательно, мы не можем решить ее полностью. Тем не менее, мы знаем, что установившаяся температура смеси равна 37 градусов Цельсия (в соответствии с данными в условии задачи).
0,0(0 оценок)
Ответ:
newvf
newvf
15.02.2021 16:41
Для решения данной задачи, нам понадобятся некоторые основные формулы квантовой механики.

Первая формула, которая нам потребуется - это формула для волновой функции частицы в бесконечно глубокой потенциальной яме:

ψ(x) = √(2/b) * sin(nπx/b)

где ψ(x) - волновая функция, x - координата частицы, b - ширина потенциальной ямы, n - номер энергетического уровня.

В данной задаче частица находится на втором энергетическом уровне, поэтому n = 2.

Теперь мы можем использовать волновую функцию, чтобы определить вероятность обнаружения частицы в заданном интервале.

Вероятность обнаружения частицы в интервале от 0 до b/3 можно найти, интегрируя квадрат модуля волновой функции в этом интервале.

P = ∫[0, b/3] |ψ(x)|² dx

где |ψ(x)|² - квадрат модуля волновой функции.

Для решения интеграла, мы должны сначала взять квадрат модуля волновой функции:

|ψ(x)|² = |√(2/b) * sin(2πx/b)|²

= |2/б * sin²(2πx/b)|

= 4/б² * sin²(2πx/b)

Теперь мы можем использовать этот результат для решения интеграла:

P = ∫[0, b/3] 4/б² * sin²(2πx/b) dx

Чтобы интегрировать эту функцию, мы можем воспользоваться формулой:

∫ sin²(ax) dx = x/2 - sin(2ax)/(4a)

Применяя эту формулу к интегралу, получим:

P = 4/б² * ∫[0, b/3] sin²(2πx/b) dx

= 4/б² * [(b/3)/2 - sin(2π(b/3)/b)/(4 * 2π/b)]

= 4/б² * [b/6 - sin(2π/3)/(4 * 2π/b)]

= 2/3 * [1 - sin(2π/3)/(2π)]

Это и есть окончательный ответ. Он представляет собой вероятность обнаружения частицы в заданном интервале от 0 до b/3 и выражен в виде числовой дроби.
0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота