Два тела масс m1 и m2, связанные невесомой нитью, лежат на гладкой горизонтальной поверхности. Нить обрывается, если сила её натяжения превышает значение Tm. C какой максимальной горизонтальной силой F можно тянуть второе тело, чтобы нить не оборвалась?
Задача №2.1.82 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»
Дано:
m1, m2, Tm, Fm−?
Решение задачи:
Схема к решению задачиПотянем второе тело с такой силой Fm, что сила натяжения нити, соединяющей тела, станет очень близка по величине к Tm, но ещё не разорвется.
По условию поверхность, по которой движутся тела, гладкая, значит сил трения нет. Покажем на схеме все силы, действующие на тела, потом запишем второй закон Ньютона для обоих тел в проекции на ось x. Ускорения рассматриваемых тел, естественно, одинаковые.
{Fm—Tm=m2aTm=m1a
Сложим оба выражения системы, а из полученного выразим ускорение a.
Fm=(m1+m2)a
a=Fmm1+m2
Подставим формулу в последнее выражение системы, а оттуда выразим искомую силу Fm.
Tm=Fmm1m1+m2
Fm=Tm(m1+m2)m1
Поделим почленно числитель дроби на знаменатель.
Fm=Tm(1+m2m1)
В условии не было дано числовых данных, задачу требовалось решить в общем виде, что мы и сделали.
Уже при жизни Архимеда вокруг его имени создавались легенды, поводом для которых служили его поразительные изобретения, производившие ошеломляющее действие на современников. Существует легенда о том, как Архимед пришёл к открытию, что выталкивающая сила равна весу жидкости в объёме тела.
Царь Гиерон, живший 250 лет до н.э., поручил ему проверить честность мастера, изготовившего золотую корону.
Сначала Архимед определил, что кусок чистого золота в 19,3 раза тяжелее такого же объёма воды. Получается, что плотность золота в 19,3 раза больше плотности воды. Архимеду надо было найти плотность вещества короны. Если эта плотность оказалась бы больше плотности воды не в 19,3 раза, а в меньшее число раз, значит, корона была изготовлена не из чистого золота.
Взвесить корону было легко, но как найти её объём, ведь корона была очень сложной формы. Много дней мучила Архимеда эта задача. И вот однажды, находясь в бане, он погрузился в наполненную водой ванну, и его внезапно осенила мысль, давшая решение задачи. Архимед воскликнул: «Эврика! Эврика!»
Архимед взвесил корону сначала в воздухе, затем в воде. По разнице в весе он рассчитал выталкивающую силу, равную весу воды в объёме короны. Определив затем объём короны, он смог вычислить её плотность, а, зная плотность, ответить на вопрос царя: нет ли примесей дешёвых металлов в золотой короне? Плотность вещества короны оказалась меньше плотности чистого золота. Тем самым мастер был разоблачён в обмане.
Задача о золотой короне побудила Архимеда заняться вопросом о плавании тел. В результате появилось замечательное сочинение «О плавающих телах», которое дошло до нас.
Условие задачи:
Два тела масс m1 и m2, связанные невесомой нитью, лежат на гладкой горизонтальной поверхности. Нить обрывается, если сила её натяжения превышает значение Tm. C какой максимальной горизонтальной силой F можно тянуть второе тело, чтобы нить не оборвалась?
Задача №2.1.82 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»
Дано:
m1, m2, Tm, Fm−?
Решение задачи:
Схема к решению задачиПотянем второе тело с такой силой Fm, что сила натяжения нити, соединяющей тела, станет очень близка по величине к Tm, но ещё не разорвется.
По условию поверхность, по которой движутся тела, гладкая, значит сил трения нет. Покажем на схеме все силы, действующие на тела, потом запишем второй закон Ньютона для обоих тел в проекции на ось x. Ускорения рассматриваемых тел, естественно, одинаковые.
{Fm—Tm=m2aTm=m1a
Сложим оба выражения системы, а из полученного выразим ускорение a.
Fm=(m1+m2)a
a=Fmm1+m2
Подставим формулу в последнее выражение системы, а оттуда выразим искомую силу Fm.
Tm=Fmm1m1+m2
Fm=Tm(m1+m2)m1
Поделим почленно числитель дроби на знаменатель.
Fm=Tm(1+m2m1)
В условии не было дано числовых данных, задачу требовалось решить в общем виде, что мы и сделали.
ответ: Tm(1+m2m1)
Уже при жизни Архимеда вокруг его имени создавались легенды, поводом для которых служили его поразительные изобретения, производившие ошеломляющее действие на современников. Существует легенда о том, как Архимед пришёл к открытию, что выталкивающая сила равна весу жидкости в объёме тела.
Царь Гиерон, живший 250 лет до н.э., поручил ему проверить честность мастера, изготовившего золотую корону.
Сначала Архимед определил, что кусок чистого золота в 19,3 раза тяжелее такого же объёма воды. Получается, что плотность золота в 19,3 раза больше плотности воды. Архимеду надо было найти плотность вещества короны. Если эта плотность оказалась бы больше плотности воды не в 19,3 раза, а в меньшее число раз, значит, корона была изготовлена не из чистого золота.
Взвесить корону было легко, но как найти её объём, ведь корона была очень сложной формы. Много дней мучила Архимеда эта задача. И вот однажды, находясь в бане, он погрузился в наполненную водой ванну, и его внезапно осенила мысль, давшая решение задачи. Архимед воскликнул: «Эврика! Эврика!»
Архимед взвесил корону сначала в воздухе, затем в воде. По разнице в весе он рассчитал выталкивающую силу, равную весу воды в объёме короны. Определив затем объём короны, он смог вычислить её плотность, а, зная плотность, ответить на вопрос царя: нет ли примесей дешёвых металлов в золотой короне? Плотность вещества короны оказалась меньше плотности чистого золота. Тем самым мастер был разоблачён в обмане.
Задача о золотой короне побудила Архимеда заняться вопросом о плавании тел. В результате появилось замечательное сочинение «О плавающих телах», которое дошло до нас.