В-1. а) Камень движется по параболической орбите ( поднимается из начальной точки, достигает наивысшей точки и идет на снижение засчет силы тяжести и гравитации)
б) По круговой орбите (формально - эллиптической, но эксцентриситет земной орбиты очень мал, посему принято считать за круговой)
27 км/ч переводим в систему СИ: 27000 м/3600 с или 7.5 м/с. 15 м/с>7.5 м/с => 15 м/с>27 км/ч (что и требовалось доказать)
Первый автомобиль проделал путь= 12 м/с*10 с=120 м. Чтобы определить скорость второго авто делим пройденный путь на время: 120 м/15 с=8 м/с
Оба тела движутся прямолинейно равномерно, в положительном направлении оси абсцисс. Чтобы решить графически - строй координатную плоскость и графики для каждого тела (зависимость координаты от времени). 1) Чтобы найти время встречи, приравниваем уравнения. 3+2t=6+t<=>t=6-3<=>t=3 (c) - время встречи.
2) Чтобы найти место встречи - подставь время встречи в одно из уравнений движения: 6+3=9(м) - место встречи.
Vx=V0x+axt. ⇒ ax=(Vx-Vox)/t. В данном случае начальная скорость - 2 м/с.⇒ ax=(5 м/с-2 м/с)/5 с = 0,6 м/с².
Дальше предлагаю решать по аналогии. Формулы приложу ниже:
Vx=V0x+axt (1) - формула определения скорости при равнопеременном движении.
Sx=V0xt+(axt²)/2 - пройденный путь при равнопеременном движении. С их можно решить любую задачу по кинематике пр прямолинейном движении. Учи физику - интереснейший предмет!
Рассмотрим движение тела, брошенного горизонтально с высоты h со скоростью (рис. 1). Сопротивлением воздуха будем пренебрегать. Для описания движения необходимо выбрать две оси координат — Ox и Oy. Начало отсчета координат совместим с начальным положением тела. Из рисунка 1 видно, что .Тогда движение тела опишется уравнениями:Анализ этих формул показывает, что в горизонтальном направлении скорость тела остается неизменной, т. е. тело движется равномерно. В вертикальном направлении тело движется равноускоренно с ускорением , т. е. так же, как тело, свободно падающее без начальной скорости. Найдем уравнение траектории. Для этого из уравнения (1) найдем время и, подставив его значение в формулу (2), получимЭто уравнение параболы. Следовательно, тело, брошенное горизонтально, движется по параболе. Скорость тела в любой момент времени направлена по касательной к параболе (см. рис. 1). Модуль скорости можно рассчитать по теореме Пифагора:Зная высоту h, с которой брошено тело, можно найти время , через которое тело упадет на землю. В этот момент координата y равна высоте: . Из уравнения (2) находимОтсюдаФормула (3) определяет время полета тела. За это время тело пройдет в горизонтальном направлении расстояние l, которое называют дальностью полета и которое можно найти на основании формулы (1), учитывая, что . Следовательно, — дальность полета тела. Модуль скорости тела в этот момент рис 1↓↓
В-1. а) Камень движется по параболической орбите ( поднимается из начальной точки, достигает наивысшей точки и идет на снижение засчет силы тяжести и гравитации)
б) По круговой орбите (формально - эллиптической, но эксцентриситет земной орбиты очень мал, посему принято считать за круговой)
г) Параболическая орбита, траектория - кривая линия.
27 км/ч переводим в систему СИ: 27000 м/3600 с или 7.5 м/с. 15 м/с>7.5 м/с => 15 м/с>27 км/ч (что и требовалось доказать)
Первый автомобиль проделал путь= 12 м/с*10 с=120 м. Чтобы определить скорость второго авто делим пройденный путь на время: 120 м/15 с=8 м/с
Оба тела движутся прямолинейно равномерно, в положительном направлении оси абсцисс. Чтобы решить графически - строй координатную плоскость и графики для каждого тела (зависимость координаты от времени). 1) Чтобы найти время встречи, приравниваем уравнения. 3+2t=6+t<=>t=6-3<=>t=3 (c) - время встречи.
2) Чтобы найти место встречи - подставь время встречи в одно из уравнений движения: 6+3=9(м) - место встречи.
Vx=V0x+axt. ⇒ ax=(Vx-Vox)/t. В данном случае начальная скорость - 2 м/с.⇒ ax=(5 м/с-2 м/с)/5 с = 0,6 м/с².
Дальше предлагаю решать по аналогии. Формулы приложу ниже:
Vx=V0x+axt (1) - формула определения скорости при равнопеременном движении.
Sx=V0xt+(axt²)/2 - пройденный путь при равнопеременном движении. С их можно решить любую задачу по кинематике пр прямолинейном движении. Учи физику - интереснейший предмет!
рис 1↓↓