Так как скорость платформы постоянна, результирующий момент всех внешних сил относительно оси вращения равен нулю. Следовательно, момент импульса относительно оси вращения системы платформа–человек остается постоянным:
I1⋅ω1=I2⋅ω2(1)
где I1 – момент инерции платформы с человеком относительно оси вращения, ω1– угловая скорость платформы до уменьшения момента инерции человека I01, I2 и ω 2– соответственно момент инерции и угловая скорость после уменьшения момента инерции человека до I02.
Плотность шара-750 кг/м^3; по условию, шар находится в состоянии равновесия, значит, действие на него всех сил, по 1-му закону Ньютона, скомпенсировано: Fа+N=mg, где N-сила реакции опоры, она равна, по 3-му закону Ньютона, силе давления шара, равна 1/3mg(по услов.), тогда, зная, что плотность p=m/V и расписав выталкивающую сил по закону Архимеда, получим выражение, из которого найдём плотность: p воды* V/2*g=2/3 p шара*V*g, в левой части берём V/2, т.к. погружена в воду, по условию, только половина шара; ну и всё, плотность воды/10^3 кг/м^3, после нехитрых преобразований получим ответ
Так как скорость платформы постоянна, результирующий момент всех внешних сил относительно оси вращения равен нулю. Следовательно, момент импульса относительно оси вращения системы платформа–человек остается постоянным:
I1⋅ω1=I2⋅ω2(1)
где I1 – момент инерции платформы с человеком относительно оси вращения, ω1– угловая скорость платформы до уменьшения момента инерции человека I01, I2 и ω 2– соответственно момент инерции и угловая скорость после уменьшения момента инерции человека до I02.
I1=I0+I01,I2=I0+I02
Момент инерции платформы (диска) равен
I0=12m1R2.
С учетом этого равенство (1) примет вид
(12mR2+I01)ω1=(12mR2+I02)ω2,ω=2πn⇒(12mR2+I01)n1=(12mR2+I02)n2n2=(12mR2+I01)n112mR2+I02=(12⋅25⋅0,82+3,5)⋅1812⋅25⋅0,82+1=23.
ответ: 23 об/мин.
Fа+N=mg, где N-сила реакции опоры, она равна, по 3-му закону Ньютона, силе давления шара, равна 1/3mg(по услов.), тогда, зная, что плотность p=m/V и расписав выталкивающую сил по закону Архимеда, получим выражение, из которого найдём плотность:
p воды* V/2*g=2/3 p шара*V*g, в левой части берём V/2, т.к. погружена в воду, по условию, только половина шара; ну и всё, плотность воды/10^3 кг/м^3, после нехитрых преобразований получим ответ