Оцените силу гравитационного взаимодействия между двумя нейтронами в ядре. Масса нейтрона примерно равна 1,7*10^-27 кг, расстояние между нейтронами примите равным 10^-15 м, значение гравитационной постоянной 6,67*10^-11 (Н*м2)/кг2.
Жёсткость пружины k начальная деформация h массы брусков m1, m2 скорость первого бруска в момент когда отпускают второй m1 v1^2 / 2 = k h^2 / 2 v1 = h корень (k / m1) ведём отсчёт времени и координат брусков от момента и положений, когда отпускают второй d^2 x1 / dt^2 = - k/m1 (x1-x2), d^2 x2 / dt^2 = - k/m2 (x2-x1) dx1 / dt = v1 при t = 0, dx2 / dt = 0 при t = 0 вычитая из первого второе получим d^2 (x1-x2) / dt^2 = (-k/m1 - k/m2) (x1-x2) откуда ясно, что величина (x1-x2) будет испытывать гармонические колебания с частотой омега = корень (k/m1 + k/m2) в начальный момент d(x1-x2) / dt = v1, x1-x2 = 0 при нулевой координате скорость максимальна амплитуда равна максимальная скорость делить на частоту A = v1 / омега = h корень (k / m1) / корень (k/m1 + k/m2) = = h корень (1/m1) / корень (1/m1 + 1/m2) = h корень (m2/(m1+m2)) амплитуда величины x1-x2 это и есть максимальная деформация пружины 10 * корень (16/25) = 8
U^2=P*R, U=√(Р*R).
1) U1=√(1,2*30)=√36=6 (В) - напряжение на R1.
I=U/R - по закону Ома. Отсюда
2) I1=6/30=0,2 (А) - ток через R1.
Т.к. ток в последовательной цепи (из R1 и R2) является constanta, то
3) I2=I1=0,2 (A) - ток через R2.
U=I*R - из закона Ома. Тогда
4) U2=0,2*90=18 (В) - напряжение на R2.
Напряжения в последовательной цепи складываются. Отсюда
5) Uобщ.=U1+U2=6+18=24 (В) - на участке цепи из R1 и R2.
ответ: Общее напряжение на участке цепи 24 В; на участке R1 - 6 В, на участке R2 - 18 В.
начальная деформация h
массы брусков m1, m2
скорость первого бруска в момент когда отпускают второй
m1 v1^2 / 2 = k h^2 / 2
v1 = h корень (k / m1)
ведём отсчёт времени и координат брусков от момента и положений, когда отпускают второй
d^2 x1 / dt^2 = - k/m1 (x1-x2), d^2 x2 / dt^2 = - k/m2 (x2-x1)
dx1 / dt = v1 при t = 0, dx2 / dt = 0 при t = 0
вычитая из первого второе получим
d^2 (x1-x2) / dt^2 = (-k/m1 - k/m2) (x1-x2)
откуда ясно, что величина (x1-x2) будет испытывать гармонические колебания с частотой омега = корень (k/m1 + k/m2)
в начальный момент d(x1-x2) / dt = v1, x1-x2 = 0
при нулевой координате скорость максимальна
амплитуда равна максимальная скорость делить на частоту
A = v1 / омега = h корень (k / m1) / корень (k/m1 + k/m2) =
= h корень (1/m1) / корень (1/m1 + 1/m2) = h корень (m2/(m1+m2))
амплитуда величины x1-x2 это и есть максимальная деформация пружины
10 * корень (16/25) = 8