Очень Два автомобиля без остановок курсируют с разными скоростями между двумя городами.
Начинают они движение одновременно из двух разных городов. Первый раз «Встречными
курсами» они проезжают мимо друг друга через 2 часа после начала движения. Следующий
раз они встретились, двигаясь в разных направлениях.
Чему равно максимально возможное значение отношения скоростей автомобилей? ответ
округлите до целого числа.
Через какое время после первой встречи водители вновь увидят друг друга? ответ выразите
в часах, округлите до целого числа.
Пусть Q0 -- исходное количество теплоты в баке, Q1 -- количество теплоты в добавленной воде, а Q2 -- итоговое количество теплоты. Пренебрегая потерями энергии, мы знаем, что Q2 = Q0 + Q1.
Далее,
Q = m * c * T = V * rho * c * T.
Считая плотность и теплоемкость воды независимой от температуры, имеем
V2 * rho * c * T2 = V0 * rho * c * T0 + V1 * rho * c * T1.
Сокращаем, получаем
V2 * T2 = V0 * T0 + V1 * T1.
Но V2 = V0 + V1, следовательно,
(V0 + V1) * T2 = V0 * T0 + V1 * T1
V0 = V1 * (T1 - T2) / (T2 - T0).
Но исходная температура T0 нам неизвестна, поэтому задача решения не имеет.
2)U=127B A=Q
I=0.5A Q=UIt=127*0.5*600=38100Дж
t=10мин=600с
A
3)t=2ч=7200c Q=UIt
Q=4гвт*ч=144*10^11вт*с P=UI
P Q=Pt
P=Q/t=2*10^9Вт
5) t=2ч=7200c Q=UIt
P=400Вт P=UI
Q Q=Pt=400*7200=2880000вт*с
6)t=10мин=600с Q=UIt
Q=36КДж=36*10^3Дж U=Q/It=36*10^3/0.5*600=0.12*10^3B=120B
I=0.5A
U
В первой задачи не понятно за 1,5 чего(секунд,минут,часов)??