Честно говоря, я даже не представляю как здесь решить по-простому. В задаче многовато неизвестных, которые в одно-два действия и не выразишь.
Дано:
h = 5 см
H = 15 см
Δd = 1,5 см
H' = 10 см
F - ?
Линзу не меняли, значит мы можем приравнять выражения для отношения (1/F) друг к другу:
(1)
d' нам известно - оно равняется расстоянию до передвижения d + изменение расстояния Δd:
d' = d + Δd
Тогда выразим f и f' из формулы линейного увеличения линзы (вместо традиционной буквы "Г" я использую букву "G", поскольку редактор уравнений не может прописывать русские буквы):
Подставляем эти выражения в уравнение (1):
Получили значение первичного расстояния между свечой и линзой. Подставляем его в выражение для первичного расстояния f между экраном и линзой:
Возвращаемся к уравнению для обратного фокусного расстояния (1/F), переворачиваем его и подставляем найденные значения:
Штатная скорость км/ч м/с м/с м/с. Интервал движения Время посадки высадки Время торможения до остановки Тормозной путь м . Длина состава м .
Найти: дистанцию между составами в [м] и [мм].
Р е ш е н и е :
Все положения, упоминаемые в доказательстве решения, отмечены на приложенном к решению рисунке.
Искомая дистанция между поездами – это свободное пространство вдоль железнодорожного полотна. Таким образом – дистанция в данном случае – это расстояние от ведущего вагона (начала) заднего Скоростного состава (положение С) до Конца припаркованного состава (положение К) в тот момент, когда припаркованный собирается отправляться.
Нам неизвестно, является ли торможение составов перед остановкой равнозамедленным или нет, и нам это знать и не нужно (!), поскольку нам дано и время, и скорость, и тормозной путь. Всё, что нам нужно – это корректно учесть все слагаемые времени и пути при торможении.
Общий интервал движения составляет и это означает, что каждые секунд, в положении Н оказывается Начало очередного состава. Уже припаркованный состав простоял на станции а это означает, что следующему за ним составу осталось проехать из положения С (начало скоростного состава) до точки Н (начало припаркованного состава) в течение секунд.
Искомая дистанция между составами, как мы уже говорили выше, измеряется не от положения С до положения Н, а от положения С до положения К (конец припаркованного состава). Однако нам будет удобно найти весь остаточный путь СН (между положениями С и Н), а затем вычесть из него длину КН (между положениями К и Н), равную длине состава м.
Из секунд, оставшихся идущему следом составу, первые секунд он будет идти с постоянной скоростью м/с из положения С в положение О, а последующие секунд он будет останавливаться из положения О до положения Н.
Длину отрезка ОН мы и так знаем, это тормозной путь м . Теперь найдём СО, т.е. длину Мы знаем, что по отрезку СО состав двигается равномерно со скоростью в течение времени секунд, значит отрезок СО, т.е. м м .
Отсюда ясно, что вся длина СН = СО + ОН , т.е. СН м м.
Как было показано выше искомая дистанция – это длина СК, равная разности СН и КН, т.е. СН и .
Честно говоря, я даже не представляю как здесь решить по-простому. В задаче многовато неизвестных, которые в одно-два действия и не выразишь.
Дано:
h = 5 см
H = 15 см
Δd = 1,5 см
H' = 10 см
F - ?
Линзу не меняли, значит мы можем приравнять выражения для отношения (1/F) друг к другу:
(1)d' нам известно - оно равняется расстоянию до передвижения d + изменение расстояния Δd:
d' = d + Δd
Тогда выразим f и f' из формулы линейного увеличения линзы (вместо традиционной буквы "Г" я использую букву "G", поскольку редактор уравнений не может прописывать русские буквы):
Подставляем эти выражения в уравнение (1):
Получили значение первичного расстояния между свечой и линзой. Подставляем его в выражение для первичного расстояния f между экраном и линзой:
Возвращаемся к уравнению для обратного фокусного расстояния (1/F), переворачиваем его и подставляем найденные значения:
ответ: 9 см.
Штатная скорость км/ч м/с м/с м/с.
Интервал движения
Время посадки высадки
Время торможения до остановки
Тормозной путь м .
Длина состава м .
Найти: дистанцию между составами в [м] и [мм].
Р е ш е н и е :
Все положения, упоминаемые в доказательстве решения, отмечены на приложенном к решению рисунке.
Искомая дистанция между поездами – это свободное пространство вдоль железнодорожного полотна. Таким образом – дистанция в данном случае – это расстояние от ведущего вагона (начала) заднего Скоростного состава (положение С) до Конца припаркованного состава (положение К) в тот момент, когда припаркованный собирается отправляться.
Нам неизвестно, является ли торможение составов перед остановкой равнозамедленным или нет, и нам это знать и не нужно (!), поскольку нам дано и время, и скорость, и тормозной путь. Всё, что нам нужно – это корректно учесть все слагаемые времени и пути при торможении.
Общий интервал движения составляет и это означает, что каждые секунд, в положении Н оказывается Начало очередного состава. Уже припаркованный состав простоял на станции а это означает, что следующему за ним составу осталось проехать из положения С (начало скоростного состава) до точки Н (начало припаркованного состава) в течение секунд.
Искомая дистанция между составами, как мы уже говорили выше, измеряется не от положения С до положения Н, а от положения С до положения К (конец припаркованного состава). Однако нам будет удобно найти весь остаточный путь СН (между положениями С и Н), а затем вычесть из него длину КН (между положениями К и Н), равную длине состава м.
Из секунд, оставшихся идущему следом составу, первые секунд он будет идти с постоянной скоростью м/с из положения С в положение О, а последующие секунд он будет останавливаться из положения О до положения Н.
Длину отрезка ОН мы и так знаем, это тормозной путь м . Теперь найдём СО, т.е. длину Мы знаем, что по отрезку СО состав двигается равномерно со скоростью в течение времени секунд, значит отрезок СО, т.е. м м .
Отсюда ясно, что вся длина СН = СО + ОН , т.е.
СН м м.
Как было показано выше искомая дистанция – это длина СК, равная разности СН и КН, т.е. СН и .
Итак: СК CH
м м.
О т в е т : дистанция между составами: м мм .