Одинаковые металлические шарики (не одноименные) с зарядами +q и -4q находятся на расстоянии r друг от друга.Шарики привели в соприкосновение. На какой расстоянии x надо их развести, чтобы сила взаимодействия осталось прежней?
на основании закона сохранения и превращения энергии составим уравнение:
wк1+wp1=wk2+wp2, где wк1, wp1 -кинетическая и потенциальная энергия шарика, находящегося на высоте h на наклонной плоскости; wк2, wp2 - кинетическая и потенциальная энергия шарика у основания наклонной плоскости.
нулевой уровень потенциальной энергии совместим с основанием наклонной плоскости. тогда
wp1 = mgh+q1*q2/4*pi*e0*h
wk1 = 0
второе слагаемое в выражении для wpl представляет собой потенциальную энергию, обусловленную взаимным расположением зарядов q1 и q2. пусть υ — скорость шарика у основания наклонной плоскости. тогда
wk2=m*v^2/2.
в это время расстояние между , как видно из рисунка, равно h/tgα. поэтому
wp2 = q1*q2*tga/4*pi*e0*h
с учетом этих значений энергии уравнение первое примет вид:
пусть условия на этом уровне нормальные (P = 10^5 Па, T = 273 K)
запишем первый закон Ньютона:
Fa + mg + F = 0, где Fa - Архимедова сила, F - искомая сила натяжения
в проекции на некоторую ось, направленную в сторону Fa:
Fa - mg - F = 0
2) пусть высота подъема шара - максимальная, тогда силы, действующие на него, скомпенсированы (аналогично):
Fa - mg = 0
пусть на h(max) плотность воздуха равна p'(в) = p(в) / 2.
составим систему уравнений:
p(в) g V = F + mg
p'(в) g V = mg
вычитаем из первого уравнения второе
gV (p(в) - p'(в)) = F
F = p(в) g V / 2.
3) по уравнению Менделеева-Клапейрона (пусть воздух - идеальный газ):
P V = m R T / M
делим на объем обе части
P = p R T / M => p = P M / R T.
молярная масса воздуха M = 29*10^-3 кг/моль
F = P M g V / 2 R T
F = 10^5 * 29 * 6 / 2 * 8,31 * 273,
F = 3 834,913 H ≈ 3,8 кН
ответ:
объяснение:
на основании закона сохранения и превращения энергии составим уравнение:
wк1+wp1=wk2+wp2, где wк1, wp1 -кинетическая и потенциальная энергия шарика, находящегося на высоте h на наклонной плоскости; wк2, wp2 - кинетическая и потенциальная энергия шарика у основания наклонной плоскости.
нулевой уровень потенциальной энергии совместим с основанием наклонной плоскости. тогда
wp1 = mgh+q1*q2/4*pi*e0*h
wk1 = 0
второе слагаемое в выражении для wpl представляет собой потенциальную энергию, обусловленную взаимным расположением зарядов q1 и q2. пусть υ — скорость шарика у основания наклонной плоскости. тогда
wk2=m*v^2/2.
в это время расстояние между , как видно из рисунка, равно h/tgα. поэтому
wp2 = q1*q2*tga/4*pi*e0*h
с учетом этих значений энергии уравнение первое примет вид:
mgh+q1*q2/4*pi*e0*h = m*v^2/2 + q1*q2*tga/4*pi*e0*h
отсюда найдем скорость:
v = √2h+q1*q2*tga/2*pi*m*e0*h(1-tga)