Однажды летним солнечным утром мальчик решил измерить длину тени от своего дома. Длина тени оказалась равна 7,6 м. Мальчик знает, что высота дома составляет 7,2м. Чему будет равна длина тени мальчика, если его рост равен 150см?
Угол падения=углу отражения; угол между лучом падающим и зеркалом= углу между отраженным лучом и зеркалом. Угол падения = 90-80=10 (угол падения - угол между перпендикуляром, проведенным к зеркалу через точку падения и падающим лучом) Соответственно, угол между падающим и отраженным лучами = 20 градусам Тогда 20*4=80 Если угол между этими лучами будет равен восьмидесяти, то каждый из этих углов равен 40. Высчитываем угол между зеркалом и отраженным лучом: 90-40=50 Значит, угол уменьшится на 30 градусов :)
Дано: v_1=9 м/с v_2=v1 / 3 g=10 м/с^2 Найти: h_v2 - ? Решение: 1) Скорость в момент времени t: v=v_0+at (v - скорость, v0 - начальная скорость, a - ускорение св. п., t - время, за которое скорость изменилась с v0 до v). В нашем случае v0=v1=9 м/с, а v=v2=3 м/с. Ускорение возьмем отрицательное, т. к. скорость уменьшается: a= -g = -10 м/с^2. Тогда имеем такое уравнение: 3=9-10t. Из него найдем время: 10t=9-3; 10t=6; t=0.6 (c). Это время, за которое скорость с 9 м/с до 3 м/с, и ОНО ЖЕ время, за которое мяч преодолел искомую высоту h_v2. 2) Преодоленное расстояние при вертикальном движении: S=v0*t+at^2/2 . Здесь S - искомая высота, S=h_v2, v0 - начальная скорость, v0=9 м/с, t - время полета, t=0.6 c, a - ускорение св. падения. Его опять берем отрицательное, потому что скорость уменьшается: a= -g = -10 м/с2. Собственно, h_v2 = 9 * 0.6 - (10 * 0.6^2) / 2 = 3.6 (м).
Угол падения = 90-80=10 (угол падения - угол между перпендикуляром, проведенным к зеркалу через точку падения и падающим лучом)
Соответственно, угол между падающим и отраженным лучами = 20 градусам
Тогда 20*4=80
Если угол между этими лучами будет равен восьмидесяти, то каждый из этих углов равен 40.
Высчитываем угол между зеркалом и отраженным лучом:
90-40=50
Значит, угол уменьшится на 30 градусов :)
v_1=9 м/с
v_2=v1 / 3
g=10 м/с^2
Найти:
h_v2 - ?
Решение:
1) Скорость в момент времени t: v=v_0+at (v - скорость, v0 - начальная скорость, a - ускорение св. п., t - время, за которое скорость изменилась с v0 до v). В нашем случае v0=v1=9 м/с, а v=v2=3 м/с. Ускорение возьмем отрицательное, т. к. скорость уменьшается: a= -g = -10 м/с^2. Тогда имеем такое уравнение:
3=9-10t.
Из него найдем время: 10t=9-3; 10t=6; t=0.6 (c). Это время, за которое скорость с 9 м/с до 3 м/с, и ОНО ЖЕ время, за которое мяч преодолел искомую высоту h_v2.
2) Преодоленное расстояние при вертикальном движении: S=v0*t+at^2/2 . Здесь S - искомая высота, S=h_v2, v0 - начальная скорость, v0=9 м/с, t - время полета, t=0.6 c, a - ускорение св. падения. Его опять берем отрицательное, потому что скорость уменьшается: a= -g = -10 м/с2. Собственно,
h_v2 = 9 * 0.6 - (10 * 0.6^2) / 2 = 3.6 (м).
ответ: h_v2 = 3.6 м.