Оля и света были замужем за одного мужчину, они имели дочь с 1 - группой и сына 1 - группой. если мужчина имеет 3 - группу крови, а оля 2 - группу, света 1 - группу определите кто чей ребёнок по материнской линии. 2 стандарт.
Найти потенциал шара радиуса R = 0,1 м, если на расстоянии r=10м от его поверхности потенциал электрического поля 
Поле вне шара совпадает с полем точечного заряда, равною заряду q шара и помещенного в его центре. Поэтому потенциал в точке, находящейся на расстоянии R + r от центра шара, jr= kq/(R + r); отсюда q = (R + r)jr/k. Потенциал на поверхности шара

2 N одинаковых шарообразных капелек ртути одноименно заряжены до одного и того же потенциала j. Каков будет потенциал Ф большой капли ртути, получившейся в результате слияния этих капель?
Пусть заряд и радиус каждой капельки ртути равны q и r. Тогда ее потенциал j = kq/r. Заряд большой капли Q = Nq, и если ее радиус равен R, то ее потенциал Ф = kQ/R = kNq/R = Njr/R. Объемы маленькой и большой капель  и  связаны между собой соотношением V=Nu. Следовательно,  и потенциал

3 В центре металлической сферы радиуса R = 1 м, несущей положительный заряд Q=10нКл, находится маленький шарик с положительным или отрицательным зарядом |q| = 20 нКл. Найти потенциал j электрического поля в точке, находящейся на расстоянии r=10R от центра сферы.
В результате электростатической индукции на внешней и внутренней поверхностях сферы появятся равные по модулю, но противоположные по знаку заряды (см. задачу 25 и рис. 332). Вне сферы потенциалы электрических полей, создаваемых этими зарядами, в любой точке равны по модулю и противоположны по знаку. Поэтому потенциал суммарного поля индуцированных зарядов равен нулю. Таким образом, остаются лишь поля, создаваемые вне сферы зарядом BQ на ее поверхности и зарядом шарика q. Потенциал первого поля в точке удаленной от центра сферы на расстояние r, , а потенциал второго поля в той же точке . Полный потенциал . При q=+20нКл j=27В; при q=-20нКл j=-9В.
Найти потенциал шара радиуса R = 0,1 м, если на расстоянии r=10м от его поверхности потенциал электрического поля 
Поле вне шара совпадает с полем точечного заряда, равною заряду q шара и помещенного в его центре. Поэтому потенциал в точке, находящейся на расстоянии R + r от центра шара, jr= kq/(R + r); отсюда q = (R + r)jr/k. Потенциал на поверхности шара

2 N одинаковых шарообразных капелек ртути одноименно заряжены до одного и того же потенциала j. Каков будет потенциал Ф большой капли ртути, получившейся в результате слияния этих капель?
Пусть заряд и радиус каждой капельки ртути равны q и r. Тогда ее потенциал j = kq/r. Заряд большой капли Q = Nq, и если ее радиус равен R, то ее потенциал Ф = kQ/R = kNq/R = Njr/R. Объемы маленькой и большой капель  и  связаны между собой соотношением V=Nu. Следовательно,  и потенциал

3 В центре металлической сферы радиуса R = 1 м, несущей положительный заряд Q=10нКл, находится маленький шарик с положительным или отрицательным зарядом |q| = 20 нКл. Найти потенциал j электрического поля в точке, находящейся на расстоянии r=10R от центра сферы.
В результате электростатической индукции на внешней и внутренней поверхностях сферы появятся равные по модулю, но противоположные по знаку заряды (см. задачу 25 и рис. 332). Вне сферы потенциалы электрических полей, создаваемых этими зарядами, в любой точке равны по модулю и противоположны по знаку. Поэтому потенциал суммарного поля индуцированных зарядов равен нулю. Таким образом, остаются лишь поля, создаваемые вне сферы зарядом BQ на ее поверхности и зарядом шарика q. Потенциал первого поля в точке удаленной от центра сферы на расстояние r, , а потенциал второго поля в той же точке . Полный потенциал . При q=+20нКл j=27В; при q=-20нКл j=-9В.
ρ = 0,8 г/см³ = 800 кг/м³
S = 210 см² = 0,021 м²
S' = 6 300 см² = 0,63 м²
g = 10 м/с²
p₀ = 100 кПа = 10⁵ Па
Найти:H - ?
Решение:Запишем выражение для гидростатического давления жидкости плотности ρ на глубине H :
p = ρ·g·H
Тогда сила гидростатического давления равна :
F = p·S = ρ·g·H·S
Запишем выражение для силы давления со стороны атмосферы p₀ на окно площадью S' :
F = p₀·S'
Приравняем эти силы и выразим высоту H :
ρ·g·H·S = p₀·S'
H = (p₀·S') : (ρ·g·S )
Подставим численные значения для величин:
H = (10⁵·0,63) : (800·10·0,021) = 375 м
ответ:H = 375 м