На лснованиии принципа Германа- Эйлера-Даламбера и еще там кого-то уже не помню, можно рассмотреть поезд как покоящийся (т. е. не подвижный) , если приложить к нему все внешние силы (это его вес - М*ж) и силы инерции - в данном случае - центробежной силы, которая рана Ф=М*С2 / Р, ж - ускорение свободного падения, т. е. 9,81 м/с2 где М - масса поезда, С - его скорость (С2 - скорость в квалрате) , Р - радиус кривизны траектории, в задаче - радиус по которому изогнулся мост. Тогда на мост действует сила М*ж + М * С2 / Р = 400 000 * 9,81 + 400 000 * (20*20) / 2000 = 3924000 + 80000 = 4004000 Н (ньютонов) = 4004 кН (килоньютона)
где М - масса поезда, С - его скорость (С2 - скорость в квалрате) , Р - радиус кривизны траектории, в задаче - радиус по которому изогнулся мост.
Тогда на мост действует сила М*ж + М * С2 / Р = 400 000 * 9,81 + 400 000 * (20*20) / 2000 = 3924000 + 80000 = 4004000 Н (ньютонов) = 4004 кН (килоньютона)
ответ: 3,4 c
Объяснение:
Пусть за время t автомобиль преодолеет растояние s
s = v0t + ( at² )/2
Будем считать что v0 = 0 м/с иначе задачу не решить + движение у нас равноускоренное значит когда-то v = v0 = 0 м/с
Тогда s = ( at² )/2
Согласно условию задачи за последнюю секунду равноускоренного движения автомобиль половину пути
Тогда
( at² )/2 - ( a( t - 1 )² )/2 = s/2
( a( t² - ( t - 1 )² ) )/2 = ( at² )/4
( t² - ( t - 1 )² )/2 = t²/4 | * 2
t² - ( t - 1 )² = t²/2
t² - ( t² + 1 - 2t ) = t²/2
t² - t² - 1 + 2t = t²/2
- 1 + 2t = t²/2
4t - 2 = t²
-t² + 4t - 2 = 0 | * ( -1 )
t² - 4t + 2 = 0
D1 = 4 - 2 = 2 ; √D1 = √2
t1 = 2 + √2 ≈ 3,4 c
t2 = 2 - √2 ≈ 0,6 c - ответ неподходящий под условие ведь тело как минимум двигалось 1 с
То есть t = t1 = 3,4 c