Определи мощность двигателя трактора, зная, что за 20 мин сгорело 10 кг дизельного топлива. КПД двигателя МДж. равен 20 %. Удельная теплота сгорания дизельного топлива — 42 МДж/кг ответ (округли до десятых): ___ кВт.
Известно, что скорость автомобиля изменяется так: v(t) = v0 + a*t. Так как автомобиль тормозит, его скорость уменьшается, то есть ускорение отрицательно. Тогда формула становится такой: v(t) = v0 - a*t, где a - модуль ускорения. Теперь смотрим, в какой момент времени автомобиль остановится. Пусть он начал тормозить в момент времени t = 0, тогда он остановится в момент времени, являющийся решением уравнения v0 - a*t = 0. То есть t = v0/a. Путь, пройденный за промежуток t∈[0;v0/a], есть ничто иное, как определенный интеграл от функции скорости по времени на этом промежутке. То есть ∫(v0 - at)dt от 0 до v0/a. Считаем неопределенный сначала: v0*t - a*t^2/2 + C. Определенный же равен: (v0*(v0/a) - a*(v0/a)^2) - (v0*0 - a*0^2/2) = v0^2 / (2a). Подставляем значения v0 = 20 м/с и a=2 м/с^2 и считаем: s = 20^2 / (2*2) м = 100 м.
1) 3
2) Т = 1/ν; ν = N/t => T = 1/(N/t) = t/N = 8/187 = 0,042 c
3) a = υ²/R; υ = (67/3,6) м/с; а = (67/3,6)²/13 = 26,6 = 27 м/с²
4) а = υ²/R; υ' = υ/7,5 => a' = (υ/7,5)²/R = υ²/(7,5²*R) = (υ²/R)/7,5² = a/7,5² = a/56,25 - уменьшится в 56,25 раз
5) R = 19 см = 0,19 м; υ = ω*R => ω = υ/R = 13/0,19 = 68,42 рад/с
6) t_o = 8 мин = 480 с; υ_ср = S_o/t_o; S_o = L*N = 2*π*R*N; υ_cp = 2*π*R*N/t_o = 2*3,14*53*8/480 = 5,55 м/с
7) ν = 1/Т = 1/(2π/ω) = ω/(2π); ω = υ/R; υ = √(a*R) => ω = √(a*R)/R = √a/√R => ν = (√a/√R)/(2π) = √a/(√R*2π) = √(8,1*g)/(√R*2π) = √81/(√1,3*2*3,14) = 1,26 c^-1