Определи показатель преломления берилла относительно воды при прохождении луча света из воды в берилл. Известно, что абсолютные показатели преломления берилла и воды соответственно равны 1,57 и 1,33
Средняя скорость и есть скорость второго туриста (т.к. если бы первый шёл весь путь со средней скоростью и не уменьшал её, то он бы сделал это за такое же время если бы шёл как сказано в задаче)
первый всего часа и каждые пол часа уменьшал скорость на 0,5км/ч, значит он:
(T1) 0.5ч со скоростью (V1) 6км:ч
(T2) 0.5ч со скоростью (V2) 5.5км:ч
(T3) 0.5ч со скоростью (V3) 5км:ч
(T4) 0.5ч со скоростью (V4) 4.5км:ч
Найдём расстояние:
S1 = T1*V1 = 0.5*6 = 3
S2 = T2*V2 = 0.5*5.5 = 2.75
S3 = T3*V3 = 0.5*5 = 2.5
S4 = T4*V4 = 0.5*4.5 = 2.25
Теперь нужно найти среднюю скорость первого туриста:
Формула средней скорости:
Vср = (S1+S2...+Sn)/(T1+T2...+Tn)
Подставим числа:
Vср = (3+2.75+2.5+2.25)/(0.5+0.5+0.5+0.5) = 10.5/2 = 5.25км:ч
Средняя скорость и есть скорость второго туриста (т.к. если бы первый шёл весь путь со средней скоростью и не уменьшал её, то он бы сделал это за такое же время если бы шёл как сказано в задаче)
ответ: V2 = 5.25 км:ч
Vср = S / t.
Рассмотрим первую половину пути:
S₁ = (S/2)
t₁ = S₁/V₁ = S / (2*V₁) = S / 20 = (1/20)*S = 0,05*S ч
Рассмотрим вторую половину пути.
Оставшийся путь
S₂ = (S/2)
Оставшееся время t₂ разобьем на 3 равных промежутка по (t₂ /3) часа
Путь на первой трети остатка:
S₂₁ = V₂₁*(t₂/3) = (20/3)*t₂
Путь на второй трети остатка:
S₂₂ = 0 (ремонт!)
Путь на последней трети остатка:
S₂₃ = V₂₃*(t₂/3) = (5/3)*t₂
Собираем
S₂ = S₂₁+S₂₂+S₂₃ = (20/3)*t₂ + 0 + (5/3)*t₂ = (25/3)*t₂
(S/2) = (25/3)*t₂
t₂ = (3/50)*S = 0,06*S ч
Общее время:
t = t₁ +t₂ = 0,05*S + 0,06*S = 0,11*S
Средняя скорость:
Vcp = S / (0,11*S) = 1 / 0,11 ≈ 9 км/ч