Определи, сколько вспышек горючей смеси происходит за 1 с в каждом цилиндре четырёхтактного двигателя, вал которого совершает 3487 оборота(-ов) за 2 мин? ответ (округли до целого числа): ОЧЕНЬ
1. две пружины, придвинув друг к другу, сдавили так, что вторая с жесткостью 300 нм укоротилась на 3 см. Какова жесткость первой резины ,если ее длина при этом уменьшилась на 5 см? k2=300 Н/м X2=3 см X1=5 см k1- ? F1=F2 k1*X1=k2*X2 k1=k2*x2/x1=300*3/5=180 Н/м
2. Брусок массой 0,5 кг начинает двигаться по гладкому столу с ускорением 6 м/с^2 под действием пружины жесткостью 250 н/м. на сколько
растягивается при этом пружина? Дано m=0,5 кг a=6 м/с2 k=250 Н/м x- ?
Втавить пропускиВы уже знакомы со многими физическими величинами, которые применяются в • • • • • • • • (динамике) . Это, например, мера гравитационных и инертных свойств тела – • • • • • (масса) , мера действия одного тела на другое в отношении возникновения ускорения – • • • •(сила) , мера действия одного тела на другое в отношении совершаемого перемещения – • • • • • • (?) . Динамика – это • • • • • •(раздел) физики, изучающий причины движения тел, ставящий целью предсказать • • • • • • • •(характер) движения, если известны действующие на тело силы и его начальные • • • • • • •(значения) : координаты и • • • • • •(величину ?) скорости. Поскольку движение тел выглядит по-разному с точек зрения различных • • • • • • • • • • • • (систем отсчета) , необходимо выбрать такую • • • • • • •(систему) отсчёта, в которой законы динамики будут верны. Развитие физики показало, что • • • • • • • • • •(существуют) так называемые
• • • • • • • • • • • •(инерциональные) системы отсчёта, в которых любое тело, на которое не действуют другие тела, будет вечно • • • • • • • • •(сохранять) свою скорость. Это утверждение называется • • • • • •(первым) законом Ньютона и означает, что при • • • • • • • • • • (уравновешивании, компесации) сил движение тела будет зависеть только от его начальных условий – координат и вектора • • • • • • • •(скорости) . Инерциальные системы отсчёта лишь • • • • • • • •(справедливы ) при рассмотрении свободных тел, а далее • • • • • • • • • • • (?) для любых тел. Именно в инерциальных СО будут справедливы основные • • • • • •(законы) динамики.
k2=300 Н/м X2=3 см X1=5 см k1- ?
F1=F2
k1*X1=k2*X2
k1=k2*x2/x1=300*3/5=180 Н/м
2. Брусок массой 0,5 кг начинает двигаться по гладкому столу с ускорением 6 м/с^2 под действием пружины жесткостью 250 н/м. на сколько
растягивается при этом пружина?
Дано m=0,5 кг a=6 м/с2 k=250 Н/м x- ?
F=k*X=m*a
X=m*a/k=0,5*6/250=3/250=0,012 м=1,2 см
физическими
величинами, которые
применяются в
• • • • • • • • (динамике)
. Это, например, мера гравитационных и
инертных свойств тела –
• • • • • (масса)
, мера действия одного тела на другое
в отношении возникновения ускорения –
• • • •(сила)
, мера действия одного
тела на другое в отношении совершаемого перемещения –
• • • • • • (?)
.
Динамика – это
• • • • • •(раздел)
физики, изучающий причины движения тел,
ставящий целью предсказать
• • • • • • • •(характер)
движения, если известны
действующие на тело силы и его начальные
• • • • • • •(значения)
: координаты
и
• • • • • •(величину ?)
скорости. Поскольку движение тел выглядит по-разному
с точек зрения различных
• • • • • • • • • • • • (систем отсчета)
, необходимо выбрать
такую
• • • • • • •(систему)
отсчёта, в которой законы динамики будут верны.
Развитие физики показало, что
• • • • • • • • • •(существуют)
так называемые
• • • • • • • • • • • •(инерциональные)
системы отсчёта, в которых любое тело, на которое
не действуют другие тела, будет вечно
• • • • • • • • •(сохранять)
свою скорость.
Это утверждение называется
• • • • • •(первым)
законом Ньютона и означает,
что при
• • • • • • • • • • (уравновешивании, компесации)
сил движение тела будет зависеть только
от его начальных условий – координат и вектора
• • • • • • • •(скорости)
.
Инерциальные системы отсчёта лишь
• • • • • • • •(справедливы )
при рассмотрении
свободных тел, а далее
• • • • • • • • • • • (?)
для любых тел. Именно в
инерциальных СО будут справедливы основные
• • • • • •(законы)
динамики.