Для решения данной задачи определим понятие "Давление". Давление есть сила, действующая на единицу площади поверхности перпендикулярно этой поверхности. Запишем P = m*a / S . Здесь P - давление, m - масса куба, a - ускорение, S - площадь, на которую куб воздействует. В случае, если лифт стоит на месте или прямолинейно и равномерно движется, то a = g = 9,8 м/с2 , где g - гравитационная постоянная.
В нашем же случае, когда лифт ускоряется a = g + 1 = 10.8 м/с2, а когда замедляется a = g - 1 = 8,8 м/с2.
S легко найти, т.к. нам известен размер ребра куба L = 20 см = 0.2 м. Итак, S = 0.2 * 0.2 = 0.04 м2
Осталось найти массу куба. Как известно масса равна произведению объёма на плотность материала: m = V * p
Объём куба равен размеру его грани в кубе, т.е. V = 0.2 * 0.2 * 0.2 = 0.008 м3.
Вычислим массу куба: m = V * p = 0.008 * 2300 = 18.4 кг
Теперь мы знаем все параметры и можем вычислить давление куба на пол:
При ускорении лифта: P = m * (g + 1) / S = 18.4 * 10.8 / 0.04 = 4968 Па
При замедлении лифта: P = m * (g - 1) / S = 18.4 * 8.8 / 0.04 = 4048 Па
В нашем же случае, когда лифт ускоряется a = g + 1 = 10.8 м/с2, а когда замедляется a = g - 1 = 8,8 м/с2.
S легко найти, т.к. нам известен размер ребра куба L = 20 см = 0.2 м.
Итак, S = 0.2 * 0.2 = 0.04 м2
Осталось найти массу куба. Как известно масса равна произведению объёма на плотность материала:
m = V * p
Объём куба равен размеру его грани в кубе, т.е. V = 0.2 * 0.2 * 0.2 = 0.008 м3.
Вычислим массу куба:
m = V * p = 0.008 * 2300 = 18.4 кг
Теперь мы знаем все параметры и можем вычислить давление куба на пол:
При ускорении лифта:
P = m * (g + 1) / S = 18.4 * 10.8 / 0.04 = 4968 Па
При замедлении лифта:
P = m * (g - 1) / S = 18.4 * 8.8 / 0.04 = 4048 Па
ma=2кг q1=ca*ma*дельта t
mв=0,88кг q2= cв*mв*(t2-t1)
t1=0 0c q1=q2
t2=100 0c ca*ma*дельта t=cв*mв*(t2-t1)
c=920дж/кг*0с дельта t = (св*mв*100)/(ca*ma)
дельта t=? дельта t= (4200*0,88*100)/(920*2)
дельта t=369600/1840
дельта t=200,8 0c
Объяснение: