Мета: дати поняття електроємності, сформулювати поняття конденсатора та на прикладі плаского конденсатора встановити залежність ємкості від властивостей діелектричної середи та лінійних розмірів конденсатора; навчити учнів розв’язувати задачі комбінованого типу на застосування законів механіки в електричних полях.
1. Електроємність.
2. Конденсатори.
3. Залежність електроємності конденсатора від діелектричної проникності і лінійних розмірів конденсатора
4. Енергія електричного поля
Ключові слова: електроємність, конденсатор, плоский конденсатор, поле конденсатору, енергія конденсатору
Електроємністю провідника С називають чисельну величину заряду, яку необхідно повідомити провідник, щоб змінити його потенціал на одиницю. 
Ємність провідника залежить від його форми, лінійних розмірів і діелектричної проникності середовища, яке оточує провідник, і не залежить від величини розташованого на ньому заряду. Одиницею ємності в системі СІ є фарада (Ф) - ємність провідника, в якому зміна заряду на 1 кулон змінює його потенціал на 1 вольт.
Конденсатором називається система двох (або декількох) різнойменно заряджених провідників з рівними за величиною зарядами. Якщо провідники є паралельними пластинами, то такий конденсатор називається плоским. Ємність плоского конденсатора: ,
де 1- 2 - різниця потенціалів між його пластинками. Ємність характеризує систему обох пластин в їх взаємному розміщенні, а не одну окрему пластину. Ємність плоского конденсатора можна також записати у вигляді: ,
де S - площа однієї з пластин, d - відстань між пластинами (товщина діелектрика). Якщо розміри пластинок набагато більші, ніж відстань між ними, то між пластинами (за винятком країв) створюється однорідне поле:
, де U- різниця потенціалів між пластинками, d- відстань між ними.
Ємність конденсатора, що складається з n пластин 
Ємність кулі радіусу r: C = 4 or
Ємність батареї конденсаторів:
а) при послідовному з'єднанні 
б) при паралельному з'єднанні Спар = С1+С2+...+Сn
Конденсатори за геометричною формою діляться на плоскі, циліндричні та сферичні.
Ємність циліндричного конденсатора рівна:
, де r1 та r2 - це радіуси зовнішнього та внутрішнього циліндрів, а l – це довжина конденсатора.
Ємність сферичного конденсатора рівна:
, де r1 та r2 – це радіуси зовнішньої та внутрішньої сфер конденсатора.
За діелектриком конденсатори діляться на повітряні, паперові, парафінові, слюдяні, керамічні, композитні та інше.
Електричну енергію поля зарядженого провідника We
,
де С - ємність провідника, q - його заряд і - потенціал провідника. Для конденсатора - різниця потенціалів між його пластинками, і С - його ємність.
После того, как предмет приблизили к линзе d1 = d-1; f1= (f+x); Г1 = f1 / d1 ; f1 = Г1·d1 Рассуждая аналогично, ка было сделано выше получаем: 1/F = 1/d1 + 1/f1 или 1/F = f1*d1 / (f1+d2) 1/F = Г1·d1·d1 / (Г1·d1 + d1) = Г1·d1 / (Г1 +1) (2)
Поскольку фокус НЕ ИЗМЕНИЛСЯ, то приравниваем (1) и (2) с учетом данных по условию задачи: 2·d / (2+1) = 4·(d-1) / (4+1) d = 6 см f = 12 см
d1 = 5 f2 = 4·5 = 20 см
Было f = 12 см , стало f1 = 20 см Экран передвинули на 20-12 = 8 см
Мета: дати поняття електроємності, сформулювати поняття конденсатора та на прикладі плаского конденсатора встановити залежність ємкості від властивостей діелектричної середи та лінійних розмірів конденсатора; навчити учнів розв’язувати задачі комбінованого типу на застосування законів механіки в електричних полях.
1. Електроємність.
2. Конденсатори.
3. Залежність електроємності конденсатора від діелектричної проникності і лінійних розмірів конденсатора
4. Енергія електричного поля
Ключові слова: електроємність, конденсатор, плоский конденсатор, поле конденсатору, енергія конденсатору
Електроємністю провідника С називають чисельну величину заряду, яку необхідно повідомити провідник, щоб змінити його потенціал на одиницю. 
Ємність провідника залежить від його форми, лінійних розмірів і діелектричної проникності середовища, яке оточує провідник, і не залежить від величини розташованого на ньому заряду. Одиницею ємності в системі СІ є фарада (Ф) - ємність провідника, в якому зміна заряду на 1 кулон змінює його потенціал на 1 вольт.
Конденсатором називається система двох (або декількох) різнойменно заряджених провідників з рівними за величиною зарядами. Якщо провідники є паралельними пластинами, то такий конденсатор називається плоским. Ємність плоского конденсатора: ,
де 1- 2 - різниця потенціалів між його пластинками. Ємність характеризує систему обох пластин в їх взаємному розміщенні, а не одну окрему пластину. Ємність плоского конденсатора можна також записати у вигляді: ,
де S - площа однієї з пластин, d - відстань між пластинами (товщина діелектрика). Якщо розміри пластинок набагато більші, ніж відстань між ними, то між пластинами (за винятком країв) створюється однорідне поле:
, де U- різниця потенціалів між пластинками, d- відстань між ними.
Ємність конденсатора, що складається з n пластин 
Ємність кулі радіусу r: C = 4 or
Ємність батареї конденсаторів:
а) при послідовному з'єднанні 
б) при паралельному з'єднанні Спар = С1+С2+...+Сn
Конденсатори за геометричною формою діляться на плоскі, циліндричні та сферичні.
Ємність циліндричного конденсатора рівна:
, де r1 та r2 - це радіуси зовнішнього та внутрішнього циліндрів, а l – це довжина конденсатора.
Ємність сферичного конденсатора рівна:
, де r1 та r2 – це радіуси зовнішньої та внутрішньої сфер конденсатора.
За діелектриком конденсатори діляться на повітряні, паперові, парафінові, слюдяні, керамічні, композитні та інше.
Електричну енергію поля зарядженого провідника We
,
де С - ємність провідника, q - його заряд і - потенціал провідника. Для конденсатора - різниця потенціалів між його пластинками, і С - його ємність.
Г= f / d, (1)
где
f - расстояние до изображения предмета
d - расстояние до предмета,
тогда f = Г·d:
По формуле тонкой линзы:
1/F = 1/d + 1/f или
1/F =f·d / (f +d)
1/F = Г·d*d / (Г·d+d) = Г·d / (Г+1) (1)
После того, как предмет приблизили к линзе d1 = d-1;
f1= (f+x); Г1 = f1 / d1 ; f1 = Г1·d1
Рассуждая аналогично, ка было сделано выше получаем:
1/F = 1/d1 + 1/f1 или
1/F = f1*d1 / (f1+d2)
1/F = Г1·d1·d1 / (Г1·d1 + d1) = Г1·d1 / (Г1 +1) (2)
Поскольку фокус НЕ ИЗМЕНИЛСЯ, то приравниваем (1) и (2) с учетом данных по условию задачи:
2·d / (2+1) = 4·(d-1) / (4+1)
d = 6 см
f = 12 см
d1 = 5
f2 = 4·5 = 20 см
Было f = 12 см , стало f1 = 20 см
Экран передвинули на 20-12 = 8 см
ответ: 8 сантиметров