Закон Био́ — Савáра — Лапла́са (также Закон Био́ — Савáра) — физический закон для определения вектора индукции магнитного поля, порождаемого постоянным электрическим током. Был установлен экспериментально в 1820 году Био и Саваром и сформулирован в общем виде Лапласом. Лаплас показал также, что с этого закона можно вычислить магнитное поле движущегося точечного заряда (считая движение одной заряженной частицы током).
Закон Био — Савара — Лапласа играет в магнитостатике ту же роль, что и закон Кулона в электростатике. Закон Био — Савара — Лапласа можно считать главным законом магнитостатики, получая из него остальные её результаты.
В современной формулировке закон Био — Савара — Лапласа чаще рассматривают как следствие двух уравнений Максвелла для магнитного поля при условии постоянства электрического поля, т.е. в современной формулировке уравнения Максвелла выступают как более фундаментальные (прежде всего хотя бы потому, что формулу Био — Савара — Лапласа нельзя просто обобщить на общий случай полей, зависящих от времени).
Закон Био́ — Савáра — Лапла́са (также Закон Био́ — Савáра) — физический закон для определения вектора индукции магнитного поля, порождаемого постоянным электрическим током. Был установлен экспериментально в 1820 году Био и Саваром и сформулирован в общем виде Лапласом. Лаплас показал также, что с этого закона можно вычислить магнитное поле движущегося точечного заряда (считая движение одной заряженной частицы током).
Закон Био — Савара — Лапласа играет в магнитостатике ту же роль, что и закон Кулона в электростатике. Закон Био — Савара — Лапласа можно считать главным законом магнитостатики, получая из него остальные её результаты.
В современной формулировке закон Био — Савара — Лапласа чаще рассматривают как следствие двух уравнений Максвелла для магнитного поля при условии постоянства электрического поля, т.е. в современной формулировке уравнения Максвелла выступают как более фундаментальные (прежде всего хотя бы потому, что формулу Био — Савара — Лапласа нельзя просто обобщить на общий случай полей, зависящих от времени).
d = V0 t => V0 = d / t.
по вертикали пучок движется по параболе под действием Кулоновской силы, которая равна по 2 закону Ньютона ma (пренебрегаем силой тяжести):
F = Ma,
E Q = Ma,
a = E Q / M.
при этом заряд Q пучка электронов равен Q = q * n, где q - заряд одного электрона, n - количество электронов
масса пучка электронов равна M = m * n, где m - масса одного электрона, n - число электронов
Тогда: a = E q / m.
по оси OY пучок электронов проходит расстояние, равное (начальная скорость в проекции на ось OY равна нулю, т.к. они перпендикулярны):
S = a t^2 / 2, где S - нам известно, 1 мм
S = E q t^2 / 2. Тогда
t = sqrt(2 S m / E q).
вернемся к движению относительно оси ОХ:
V0 = d / t = d / sqrt(2 S m / E q).
V0 = 5*10^-2 / sqrt(2 * 10^-3 * 9,1*10^-31 / 15*10^3 * 1,6*10^-19),
V0 = 5*10^-2 / sqrt(18,2*10^-34 / 24*10^-16),
V0 = 5*10^-2 / 8,706*10^-10,
V0 = 0,574*10^8 м/с