Определите соотношение масс соударяющихся шаров, один из которых до столкновения покоился, если после центрального удара шары разлетаются в противоположные стороны с одинаковыми скоростями
Приравнивая левые части уравнений друг к другу после элементарных преобразований получаем
M*(M-3m) = 0
Это уравнение имеет одно решение, имеющее физический смысл, а именно
M = 3m
Следовательно, при соотношении масс один к трём при упругом лобовом соударении оба тела разлетаются в противоположные стороны с одинаковыми скоростями (составляющими, кстати, по модулю величину, равную половине величины скорости налетающего тела).
Mv - mv = mv0
Mv^2/2 + mv^2/2 = mv0^2/2
Возводим в квадрат обе части первого уравнения, во втором уравнении обе части умножаем на 2 и на m
Получаем:
M^2*v^2 - 2*M*mv^2 + m^2*v^2 = m^2*v0^2
M*m*v^2 + m^2*v^2 = m^2*v0^2
Приравнивая левые части уравнений друг к другу после элементарных преобразований получаем
M*(M-3m) = 0
Это уравнение имеет одно решение, имеющее физический смысл, а именно
M = 3m
Следовательно, при соотношении масс один к трём при упругом лобовом соударении оба тела разлетаются в противоположные стороны с одинаковыми скоростями (составляющими, кстати, по модулю величину, равную половине величины скорости налетающего тела).