1. Весной на улице вдруг резкое глобальное потепление, а снег ещё не растаел. Видно два кусочка льда один побольше другой по меньше.
или...
Шёл сильный град. Когда он закончился была температура 25°С. Один большой кусок льда растаел быстрее маленького.
2. Учёные взяли большой кусок льда и маленький. И для опыта поместили их в комнату с температурой 25°С. И так как у большего куска больше льда то температуре нужно больше времени чтобы растопить это, в отличии от маленького куска льда. Ещё лёд большого куска охлаждает свои части.
В задачах на движение всегда участвуют три взаимосвязанные величины: S=V×t, где S - расстояние (пройденный путь), V - скорость, t - время движения. В случаях, когда рассматривается движение объекта поперёк течения, надо понимать, что имеет место относительное движение, т.к. объект совершает одновременно два движения: двигается относительно воды со скоростью-вектором V и сносится течением реки со скоростью-вектором U, совершая соответственно два вида перемещений: одно - относительно неподвижного берега (собственно снос течением), другое - движение к противоположному берегу. Исходя из вышесказанного, такие задачи всегда рассматриваются в двух системах координат - подвижной и неподвижной, относительно которых перемещение и скорость объекта различны. Для решения данной задачи прежде всего найдём время tв, спустя которое встретятся пловцы, для чего определим их скорость сближения (относительно воды - подвижной системы координат) Vc = V1+V2 = 1,1 + 0,6 = 1,7 м/с , где V1=1,1 м/c - скорость 1-го пловца относительно воды, V2=0,6 м/c - скорость 2-го пловца относительно воды. Тогда время, спустя которое встретятся пловцы, tв=L/Vc=46/1,7=27,1 c, где L=46 м - ширина реки. Очевидно, что за это же время река отнесёт их относительно берега (неподвижной системы координат) на расстояние S = U×tв = 1,5×27,1 = 40,7 м, где U=1,5 м/с - скорость течения реки. Квадрат же пути S1²= L1² + S² первого пловца до момента встречи в системе отсчёта, связанной с берегом (т.е. неподвижной системы координат) находится из решения прямоугольного треугольника, в котором S1 - гипотенуза, а катеты: L1=V1×tв=1,1×27,1 =29,81 м - расстояние, которое преодолел 1-й пловец относительно воды и S=U×tв = 1,5×27,1 = 40,65 м — снос пловца относительно берега; откуда S1 = √(29,81² + 40,65²) = 50,41 м
1. Весной на улице вдруг резкое глобальное потепление, а снег ещё не растаел. Видно два кусочка льда один побольше другой по меньше.
или...
Шёл сильный град. Когда он закончился была температура 25°С. Один большой кусок льда растаел быстрее маленького.
2. Учёные взяли большой кусок льда и маленький. И для опыта поместили их в комнату с температурой 25°С. И так как у большего куска больше льда то температуре нужно больше времени чтобы растопить это, в отличии от маленького куска льда. Ещё лёд большого куска охлаждает свои части.
Для решения данной задачи прежде всего найдём время tв, спустя которое встретятся пловцы, для чего определим их скорость сближения (относительно воды - подвижной системы координат) Vc = V1+V2 = 1,1 + 0,6 = 1,7 м/с , где V1=1,1 м/c - скорость 1-го пловца относительно воды, V2=0,6 м/c - скорость 2-го пловца относительно воды. Тогда время, спустя которое встретятся пловцы, tв=L/Vc=46/1,7=27,1 c, где L=46 м - ширина реки.
Очевидно, что за это же время река отнесёт их относительно берега (неподвижной системы координат) на расстояние S = U×tв = 1,5×27,1 = 40,7 м, где U=1,5 м/с - скорость течения реки.
Квадрат же пути S1²= L1² + S² первого пловца до момента встречи в системе отсчёта, связанной с берегом (т.е. неподвижной системы координат) находится из решения прямоугольного треугольника, в котором S1 - гипотенуза, а катеты: L1=V1×tв=1,1×27,1 =29,81 м - расстояние, которое преодолел 1-й пловец относительно воды и S=U×tв = 1,5×27,1 = 40,65 м — снос пловца относительно берега; откуда S1 = √(29,81² + 40,65²) = 50,41 м