Период T=2*pi*sqrt(L*C) В таком контуре энергия на катушке равна энергии на конденсаторе. Wс=Wl (C*U^2)/2 = (L*I^2)/2 Но этот контур не подключен к источнику питания, значит нажно использовать формулу для энергии конденсатора q^2/(2*C) после преобразований получаем, что L=q^2 (max) / ( i^2 (max)*C) Теперь подставим в формулу периода, где сократится емкость конденсатора. T=2*pi*sqrt(q^2 / i^2) Мы просто выразили индуктивность и подставили в формулу периода. Поскольку контур сам по себе, без источника, то значения тока и заряда будут максимальными.
R₁ = 259.8 H; R₂ = 150 H
Объяснение:
Будем считать, угол между левой и правой опорными плоскостями равен 90°.
G = 300H
R₁ - ? - реакция правой опорной плоскости (направлена перпендикулярно этой плоскости по её внешней нормали)
R₂ - ? - реакция левой опорной плоскости (направлена перпендикулярно этой плоскости по её внешней нормали)
Очевидно, что R₁ ⊥ R₂
Проецируем систему сил на направление R₁
R₁ - G · cos 30° = 0
R₁ = G · cos 30° = 300 · 0.866 = 259.8 (H)
Проецируем систему сил на направление R₂
R₂ - G · sin 30° = 0
R₂ = G · sin 30° = 300 · 0.5 = 150 (H)
В таком контуре энергия на катушке равна энергии на конденсаторе.
Wс=Wl
(C*U^2)/2 = (L*I^2)/2
Но этот контур не подключен к источнику питания, значит нажно использовать формулу для энергии конденсатора q^2/(2*C)
после преобразований получаем, что L=q^2 (max) / ( i^2 (max)*C)
Теперь подставим в формулу периода, где сократится емкость конденсатора. T=2*pi*sqrt(q^2 / i^2)
Мы просто выразили индуктивность и подставили в формулу периода.
Поскольку контур сам по себе, без источника, то значения тока и заряда будут максимальными.