Если считать, что плотность солёной воды больше, чем пресной, то думаю, что уровень повысится.
Если бы кубик был из солёной воды, то после таяния уровень не изменился бы, потому что получившийся объём растаявшей солёной воды, умноженный на плотность солёной воды равен массе куска солёного льда, равен объёму вытесняемой солёной воды пока кубик ещё плавает.
Но наш кубик из пресной воды, следовательно при той же массе (поэтому давая такой же подъём уровня в сосуде, как и солёный кубик) пресный растает в бОльший объём воды, чем растаял бы солёный, и это повысит уровень.
Может ошибаюсь, но думаю что так. Нужно будет попробовать при случае.
Найдём зависимость периода обращения спутника от плотности и радиуса планеты.
Сила притяжения планеты F = GMm/R² создаёт центростремительное ускорение спутника ω²R: GMm/R² = mω²R (G — универсальная гравитационная постоянная, M и m — массы планеты и спутника соответственно, ω — угловая скорость обращения спутника) .
Но масса планеты равна произведению плотности и объёма: M = ρV = 4πR³ρ/3; тогда G(4πR³ρ/3)/R² = ω²R; (4π/3)ρG = ω²; ω = 2√((π/3)ρG).
Период обращения равен T = 2π/ω = √(3/(πρG)).
Как видно, период обращения спутника зависит только от плотности планеты (обратно пропорционален квадратному корню из неё) и не зависит от её радиуса.
Отсюда получаем
ОТВЕТ: период обращения спутника Юпитера примерно в 2 раза больше, чем спутника Земли.
Если бы кубик был из солёной воды, то после таяния уровень не изменился бы, потому что получившийся объём растаявшей солёной воды, умноженный на плотность солёной воды равен массе куска солёного льда, равен объёму вытесняемой солёной воды пока кубик ещё плавает.
Но наш кубик из пресной воды, следовательно при той же массе (поэтому давая такой же подъём уровня в сосуде, как и солёный кубик) пресный растает в бОльший объём воды, чем растаял бы солёный, и это повысит уровень.
Может ошибаюсь, но думаю что так. Нужно будет попробовать при случае.
Сила притяжения планеты F = GMm/R² создаёт центростремительное ускорение спутника ω²R:
GMm/R² = mω²R
(G — универсальная гравитационная постоянная, M и m — массы планеты и спутника соответственно, ω — угловая скорость обращения спутника) .
Но масса планеты равна произведению плотности и объёма:
M = ρV = 4πR³ρ/3;
тогда
G(4πR³ρ/3)/R² = ω²R;
(4π/3)ρG = ω²;
ω = 2√((π/3)ρG).
Период обращения равен T = 2π/ω = √(3/(πρG)).
Как видно, период обращения спутника зависит только от плотности планеты (обратно пропорционален квадратному корню из неё) и не зависит от её радиуса.
Отсюда получаем
ОТВЕТ: период обращения спутника Юпитера примерно в 2 раза больше, чем спутника Земли.