Петро підкидає консервну банку вертикально вгору і хоче влучити в неї іншою банкою. Також він жадає, щоб удар відбувся на висоті м . Він знає, що для цього йому необхідно кинути другу банку через секунди після першої. Вважаємо, що обидві банки він кинув з однаковою швидкістю , а прискорення вільного падіння м с Знайти час між кидком першої банки і ударом обох в повітрі.
Плотность стали ρ₂ = 7,8 г/см³
Объем тела V = 50 см³
Масса m = 114 г
Найти: V₂=?
Решение.
Если бы тело полностью состояло изо льда, то его масса
была бы:
m' = ρ₁V = 0,917*50 = 45,85 (г)
Значит, оставшаяся масса m₂' = m-m' = 114 - 45,85 = 68,15 (г)
является массой стального шарика за вычетом массы
льда в объеме этого шарика.
Тогда:
V₂ = m₂'/(ρ₂-ρ₁) = 68,15/(7,8 - 0,917) =
= 68,15 : 6,883 = 9,9 (см³)
Проверка: масса стального шарика m₂ = 9,9*7,8 = 77,22 (г)
масса льда m₁ = (50-9,9)*0,917 = 36,77 (г)
общая масса тела: m = m₁+m₂ = 113,99 ≈ 114 (г)
ответ: объем стального шарика 9,9 см³
v1/v2 = корень из ( (R + h2) / (R + h1) )
T1/T2 = ( (R + h1) / (R + h2) )^(3/2)
Объяснение:
дано:
h1
h2
R
найти:
v1/v2
T1/T2
скорость движения спутника по орбите на высоте h:
v = корень из ( G×M / (R + h) )
G - гравитационная постоянная,
M - масса Земли
v1/v2 = (корень из ( G×M / (R + h1) ) ) / ( корень из ( G×M / (R + h2) ) ) = корень из ( ( (G×M) × (R + h2) ) / ( (G×M) × (R + h1) ) ) = корень из ( (R + h2) / (R + h1) )
период обращения T:
T = 2 × pi × (R + h) / v
T1/T2 = (2 × pi × (R + h1) / v1) / ((2 × pi × (R + h2) / v2) = ( (R + h1) / (R + h2) ) × (v2/v1) = ( (R + h1) / (R + h2) ) × ( корень из ( (R + h1) / (R + h2) ) ) = ( (R + h1) / (R + h2) )^(3/2)