Площадь малого поршня гидравлической машины S1=3см2. Сила, действующая на малый поршень равна F1=500 Н. Определите силу , действующую на большой поршень, если его площадь равна S2=15 см2
Распишем уравнения движения каждого автомобиля: S1 = Vo * t1 + a1*(t1)^2 / 2 S2 = Vo * t2 + a2*(t2)^2 / 2 В условии сказано, что они "выходят", значит, начальная скорость равна нулю. Также в условии сказано, что ускорения у них равны: S1 = a*(t1)^2 / 2 S2 = a*(t2)^2 / 2 Нам необходимо такое расположения автомобилей, в котором расстояние между ними равно 70 м: S2 - S1 = 70 м Занесем все в общую формулу: S2 - S1 = a*(t2)^2 / 2 - a*(t1)^2 / 2 = 70 (м) Вместо t2 подставим t1 + 10c: a*(t1 + 10)^2 / 2 - a*(t1)^2 / 2 = 70 Немного математики: (a*(t1 + 10)^2 - a*(t1)^2)/ 2 = 70 - под общий знаменатель (a*(t1^2 + 20*t1 + 100) - a*(t1)^2) / 2 = 70 (a* (t1)^2 + a*20*t1 + 100*a - a * (t1)^2) / 2 = 70 a*20*t1 +100*a = 140 Подставим значение а: 0,2*20*t1 + 100 * 0,2 = 140 4*t1 = 120 t1 = 30 c ответ: 30с
α=30; Fт=mg*sinα;
V1=0,14; Fтр=uN; N=mgcosα;
V2=2,57; По Ньютону:
u=0,1; Fт-Fтр=ma; a=(mgsinα-umgcosα)/m;
t-? v1+at=v2;
t=(v2-v1)/a=(v2-v1)/g(sinα-ucosα)=(2,57-0,14)/10*(0,5- 0,1*√3/2)=0,58=0,6 с;
ответ:0,6 секунд.
S1 = Vo * t1 + a1*(t1)^2 / 2
S2 = Vo * t2 + a2*(t2)^2 / 2
В условии сказано, что они "выходят", значит, начальная скорость равна нулю. Также в условии сказано, что ускорения у них равны:
S1 = a*(t1)^2 / 2
S2 = a*(t2)^2 / 2
Нам необходимо такое расположения автомобилей, в котором расстояние между ними равно 70 м:
S2 - S1 = 70 м
Занесем все в общую формулу:
S2 - S1 = a*(t2)^2 / 2 - a*(t1)^2 / 2 = 70 (м)
Вместо t2 подставим t1 + 10c:
a*(t1 + 10)^2 / 2 - a*(t1)^2 / 2 = 70
Немного математики:
(a*(t1 + 10)^2 - a*(t1)^2)/ 2 = 70 - под общий знаменатель
(a*(t1^2 + 20*t1 + 100) - a*(t1)^2) / 2 = 70
(a* (t1)^2 + a*20*t1 + 100*a - a * (t1)^2) / 2 = 70
a*20*t1 +100*a = 140
Подставим значение а:
0,2*20*t1 + 100 * 0,2 = 140
4*t1 = 120
t1 = 30 c
ответ: 30с