Плоскогубці утворюють два однакових з'єднаних важеля. Плечо важеля AB у 7 разів довше плеча BC. З якою силою плоскогубці стискають м'ячик, якщо сила F, прикладена до рукояток, дорівнює 5,6 Н? (Відповідь округліть до 0,1 Н).
Мост Уитстона является сбалансированным когда разность потенциалов равна нулю, по нашей схеме если φ1-φ2=0, то мост Уитстона в нашем случае является сбалансированным.
В узел E, поступает ток I1 и из узла выпускает ток I3 и j, ток j=0, так как напряжение - это разность потенциалов, а у нас в этом месте φ1-φ2=0 то есть как раз разность потенциалов равна нулю (так как это сбалансированный мост Уитстона) значит и напряжение на этом участке равно 0 и по закону Ома j=U/r где r-сопротивление резистора; j-ток протекающий через этот участок; U-разность потенциалов на этом участке. Следовательно j=0/r даже не зная r понятно, что j=0 А так как 0 в числителе. Поэтому по закону сохранения заряда какой ток поступает в узел такой и выпускает. То есть I1=I3+j мы выяснили что j=0, следовательно I1=I3.
В узел F, поступает ток j и I2, а выпускается ток I4. По закону сохранения заряда j+I2=I4 так как мы выяснили, что j=0, то I2=I4.
Так как φ1-φ2=0, то φ1=φ2 обозначим их как просто φ, то есть φ1=φ2=φ.
Так как напряжение - это разность потенциалов (по определению), то по закону Ома:
I1=(U-φ1)/R1=(U-φ)/R1
I3=(φ1-0)/R3=(φ-0)/R3=φ/R3
I2=(U-φ2)/R2=(U-φ)/R2
I4=(φ2-0)/R4=(φ-0)/R4=φ/R4
Раз I1=I3 и I2=I4, то:
1) I1=I3
(U-φ)/R1=φ/R3
2) I2=I4
(U-φ)/R2=φ/R4
Составим систему уравнений:
(U-φ)/R1=φ/R3
(U-φ)/R2=φ/R4
(U-φ)/φ=R1/R3
(U-φ)/φ=R2/R4
Следовательно:
R1/R3=R2/R4
R1*R4=R2*R3 - это значит, что когда у нас сбалансированный мост Уитстона, то произведения сопротивлений по диагонали равны.
Каждое равенство R1*R4=R2*R3 - это 1 комбинация (1 отдельный сбалансированный мост Уитстона), главное чтобы в каждой комбинации были разные R1 и R2 и R3 и R4 (так как по условию просят, чтобы резисторы, а следовательно и сопротивление было разным).
Также следим чтобы во всех комбинациях не повторялись цифры больше чем 5 раз, так как по условию у нас имеется по 5 штук резисторов каждого сопротивления от 1 Ом до 10 Ом.
Ну и само собой R1, R2, R3, R4 не может быть меньше 1 Ом и больше 10 Ом (по условию).
Я нашёл таких комбинаций 8 штук, вот они:
1) 1*10=2*5
2) 1*8=2*4
3) 1*6=2*3
4) 2*6=3*4
5) 2*10=4*5
6) 3*8=4*6
7) 3*10=5*6
8) 4*10=5*8
То есть итого можно собрать одновременно из этого набора как максимум 8 сбалансированных мостов Уитстона, при том что в каждой мостовой схеме все резисторы имеют разное сопротивление.
ответ: Можно собрать одновременно из этого набора как максимум 8 сбалансированных мостов Уитстона, при том что в каждой мостовой схеме все резисторы имеют разное сопротивление.
1) Заметим, что какая бы ни была цепочка, если сопротивления всех ее звеньев увеличить вдвое, ее эквивалентное сопротивление также возрастет вдвое.
Заметим что наша цепочка это три последовательных резистора r, и паралелльно к ней присоединенная такая же бесконечная цепочка, но с удвоенным сопротивлением.
Поэтому
1/R = 1/(3r) + 1/(2R)
1/(2R) = 1/(3r)
R= 1.5 r
2) Откинем два крайних резистора пока
Обозначим ток, ушедший в первый горизонтальный резистор как A1, а ток ушедший в первый вертикальный резистор как B1, во второй горизонтальный A2, во второй вертикальный B2 и т д. Для любого звена с номером n имеем два правила Кирхгофа
Отсюда
Пусть полный ток I в первом звене разделился как
Посчитаем несколько первых звеньев по полученному правилу
Заметим что коэффициенты при k в скобках и свободные члены это все числа Фибоначчи! Причем множитель при k это число Фибоначчи с номером на 2 большим, чем соответствующий свободный член.
При стремлении n к бесконечности, отношение коэффициента при k и свободного члена стремится к Ф^2, где число Ф = (1+√5)/2 - золотое сечение. Если k не будет равен 1/Ф^2, мы получим в итоге неограниченный рост токов при стремлении n к бесконечности, чего не может быть. Для компенсации растущих чисел Фибоначчи мы понимаем что k может быть только равен 1/Ф^2.
Теперь вспомним про два крайних резистора и посчитаем перепад напряжения от A к B идя по самому нижнему контуру (по последнему вертикальному резистору течет нулевой ток)
Мост Уитстона является сбалансированным когда разность потенциалов равна нулю, по нашей схеме если φ1-φ2=0, то мост Уитстона в нашем случае является сбалансированным.
В узел E, поступает ток I1 и из узла выпускает ток I3 и j, ток j=0, так как напряжение - это разность потенциалов, а у нас в этом месте φ1-φ2=0 то есть как раз разность потенциалов равна нулю (так как это сбалансированный мост Уитстона) значит и напряжение на этом участке равно 0 и по закону Ома j=U/r где r-сопротивление резистора; j-ток протекающий через этот участок; U-разность потенциалов на этом участке. Следовательно j=0/r даже не зная r понятно, что j=0 А так как 0 в числителе. Поэтому по закону сохранения заряда какой ток поступает в узел такой и выпускает. То есть I1=I3+j мы выяснили что j=0, следовательно I1=I3.
В узел F, поступает ток j и I2, а выпускается ток I4. По закону сохранения заряда j+I2=I4 так как мы выяснили, что j=0, то I2=I4.
Так как φ1-φ2=0, то φ1=φ2 обозначим их как просто φ, то есть φ1=φ2=φ.
Так как напряжение - это разность потенциалов (по определению), то по закону Ома:
I1=(U-φ1)/R1=(U-φ)/R1
I3=(φ1-0)/R3=(φ-0)/R3=φ/R3
I2=(U-φ2)/R2=(U-φ)/R2
I4=(φ2-0)/R4=(φ-0)/R4=φ/R4
Раз I1=I3 и I2=I4, то:
1) I1=I3
(U-φ)/R1=φ/R3
2) I2=I4
(U-φ)/R2=φ/R4
Составим систему уравнений:
(U-φ)/R1=φ/R3
(U-φ)/R2=φ/R4
(U-φ)/φ=R1/R3
(U-φ)/φ=R2/R4
Следовательно:
R1/R3=R2/R4
R1*R4=R2*R3 - это значит, что когда у нас сбалансированный мост Уитстона, то произведения сопротивлений по диагонали равны.
Каждое равенство R1*R4=R2*R3 - это 1 комбинация (1 отдельный сбалансированный мост Уитстона), главное чтобы в каждой комбинации были разные R1 и R2 и R3 и R4 (так как по условию просят, чтобы резисторы, а следовательно и сопротивление было разным).
Также следим чтобы во всех комбинациях не повторялись цифры больше чем 5 раз, так как по условию у нас имеется по 5 штук резисторов каждого сопротивления от 1 Ом до 10 Ом.
Ну и само собой R1, R2, R3, R4 не может быть меньше 1 Ом и больше 10 Ом (по условию).
Я нашёл таких комбинаций 8 штук, вот они:
1) 1*10=2*5
2) 1*8=2*4
3) 1*6=2*3
4) 2*6=3*4
5) 2*10=4*5
6) 3*8=4*6
7) 3*10=5*6
8) 4*10=5*8
То есть итого можно собрать одновременно из этого набора как максимум 8 сбалансированных мостов Уитстона, при том что в каждой мостовой схеме все резисторы имеют разное сопротивление.
ответ: Можно собрать одновременно из этого набора как максимум 8 сбалансированных мостов Уитстона, при том что в каждой мостовой схеме все резисторы имеют разное сопротивление.Объяснение:
1) Заметим, что какая бы ни была цепочка, если сопротивления всех ее звеньев увеличить вдвое, ее эквивалентное сопротивление также возрастет вдвое.
Заметим что наша цепочка это три последовательных резистора r, и паралелльно к ней присоединенная такая же бесконечная цепочка, но с удвоенным сопротивлением.
Поэтому
1/R = 1/(3r) + 1/(2R)
1/(2R) = 1/(3r)
R= 1.5 r
2) Откинем два крайних резистора пока
Обозначим ток, ушедший в первый горизонтальный резистор как A1, а ток ушедший в первый вертикальный резистор как B1, во второй горизонтальный A2, во второй вертикальный B2 и т д. Для любого звена с номером n имеем два правила Кирхгофа
Отсюда
Пусть полный ток I в первом звене разделился как
Посчитаем несколько первых звеньев по полученному правилу
Заметим что коэффициенты при k в скобках и свободные члены это все числа Фибоначчи! Причем множитель при k это число Фибоначчи с номером на 2 большим, чем соответствующий свободный член.
При стремлении n к бесконечности, отношение коэффициента при k и свободного члена стремится к Ф^2, где число Ф = (1+√5)/2 - золотое сечение. Если k не будет равен 1/Ф^2, мы получим в итоге неограниченный рост токов при стремлении n к бесконечности, чего не может быть. Для компенсации растущих чисел Фибоначчи мы понимаем что k может быть только равен 1/Ф^2.
Теперь вспомним про два крайних резистора и посчитаем перепад напряжения от A к B идя по самому нижнему контуру (по последнему вертикальному резистору течет нулевой ток)
Где φ = 1/Ф = (1-√5)/2 ≈0.618