По длинной трубе с внутренним диаметром 5 см и внешним 7 см течет ток, равномерно распределенный по сечению трубы. на оси трубы расположен тонкий проводник с током 10 а. определить направление и плотность тока в трубе, при которых индукция магнитного поля вне трубы будет равна нулю.
Начнем с того, что примем массы холодной и горячей воды за X и Y соответственно. Далее, зная теплоемкость и разницу температур, мы можем посчитать, сколько энергии отдала горячая вода:
Q=y*c*t=4200*20*y=84000y
Получается, что горячая вода отдала 84000у энергии и её температура уменьшилась на 20 градусов, в то время как холодная вода получила столько же энергии, но при этом её темпеатура увеличилась на 30 градусов.
Из соотношения 20/30, мы можем сделать вывод, что y=1.5x
Как мы знаем, общий объем ванны, мы понимаем, что X+Y=200. Теперь, подставляем вместо Y Х и получаем формулу X+1.5X=200 => 2.5x=200
Х=200/2,5=80кг
Теперь, зная объем и массу холодной воды, с легкостью находим объем горячей Y=80*1.5=120кг.
Всё, задача решена.
Теперь уже можно кое-что рассказать и о явлении сверхпроводимости. Прежде всего здесь отсутствует электрическое сопротивление. А нет сопротивления оттого, что все электроны коллективно пребывают в одинаковом состоянии. При обычном течении тока то один электрон, то другой выбивается из равномерного потока, постепенно разрушая полный импульс. Здесь же не так-то просто помешать одному электрону делать то , что делают другие, ибо все бозе-частицы стремятся попасть в одинаковое состояние. Ток , если уж он пошел, то это навеки.
Легко также понять, что если имеется кусок металла в сверхпроводящем состоянии и вы включите не очень сильное магнитное поле ( что будет, когда оно сильное, мы обойдем молчанием), то оно не сможет проникнуть в металл. Если бы в момент создания магнитного поля хоть какая-то его часть возросла внутри металла, то в нем появилась бы скорость изменения потока, а в результате и электрическое поле, которое в свою очередь немедленно вызвало бы электрический ток , который, по закону Ленца, был бы направлен на уменьшение потока. А раз все электроны будут двигаться совместно, то бесконечно малое электрическое поле уже вызовет достаточный ток , чтобы полностью воспротивиться наложению любого магнитного поля. Значит, если вы включите поле после того как охладили металл до сверхпроводящего состояния, внутрь оно допущено ни за что не будет.
Еще интереснее другое связанное с этим явление, экспериментально обнаруженное Мейсснером. Если имеется кусок металла при высокой температуре (т. е. обычный проводник) и в нем вы создали магнитное поле, а затем снизили температуру ниже критического уровня (когда металл становится сверхпроводником ), то поле будет вытолкнуто. Иными словами, в сверхпроводнике возникает свой собственный ток , и как раз в таком количестве, чтобы вытолкнуть поле наружу.
Причину этого можно понять из уравнений, и сейчас я объясню как. Пусть у нас имеется сплошной кусок сверхпроводящего материала (без отверстий). Тогда в любом установившемся положении дивергенция тока должна быть равна нулю, потому что ему некуда течь. Удобно будет выбрать дивергенцию А равной нулю. (Конечно, полагалось бы объяснить, отчего принятие этого соглашения не означает потери общности, но я не хочу тратить на это время.) Если взять дивергенцию от уравнения (19.18), то в итоге окажется, что лапласиан от q должен быть равен нулю. Но погодите, а как же с вариацией r? Я забыл упомянуть об одном важном пункте. В металле существует фон положительных зарядов (из-за наличия атомных ионов решетки). Если плотность заряда r однородна, то не будет ни остаточного заряда, ни электрического поля. Если бы в каком-то месте электроны и скопились, то их заряд не был бы нейтрализован и возникло бы сильнейшее отталкивание, которое растолкало бы электроны по всему металлу. Значит, в обычных обстоятельствах плотность электронного заряда в сверхпроводниках почти идеально однородна, и я вправе считать r постоянным. Далее, единственная возможность, чтобы Ñ2q было равно нулю всюду внутри сплошного куска металла,— это постоянство q. А это означает, что в J не входит член с р-импульсом.