Не сказано, что цилидры бесконечные, равно как и то, что расстояние от общей оси цилиндров до искомой точки намного меньше длины цилиндров. А без таких оговорок решение такой задачи становится несопоставимо более сложным. К тому же, для решения конечной задачи требуется и сама фактическая длина цилиндров, а поскольку такая длина не указана, то будем считать, цилиндры бесконечными.
В этом случае, по теореме Гаусса:
K = Q/εo; где K - полный поток поля по замкнутой поверхности, Q - заряд, окружённый этой поверхностью, а εo - диэлектрическая проницаемость вакуума.
Рассмотрим замкнутую поверхность в виде поперечно срезанного коаксиального заданным цилиндра с радиусом L = 8 см и длиной x. Ясно, что в эту поверхность войдёт только меньший цилиндр, а значит, большой внешний для данной точки цилиндр вообще не будет влиять на поток электростатического поля через выбранную поверхность.
Учтём, что в силу симметрии и бесконечности заряженных цилиндров, поле в любой точке будет направлено перпендикулярно к оси цилиндров, и будет иметь напряжённость - модуль которой чётко определяется расстоянием до оси.
Из этих предпосылок следует, что поток электростатического поля через торцы выбранной цилиндрической поверхностности - окажется равным нулю. А поток чрез её боковую поверхность - окажется равным произведению её площади на модуль напряжённоости поля на расстоянии L от оси.
K = Q/εo;
2πLxE = 2πrxσ/εo;
LE = rσ/εo, где r и σ - радиус и поверхностная плотность заряда меньшего цилиндра.
Намагничивающий ток определяется с закона полного тока
IстHст+H0l0=Iμw1.
Напряженность магнитного поля определяется для стали по кривой намагничивания, для воздуха—из выражения Н0= В0/μ0.
Магнитная индукция в магнитопроводе трансформатора определяется из выражения
U1=E1=4,44w1fBmSст, откуда
Вm=U1/(4,44 w1fSст)=120/(4,44∙250∙50∙18∙10-4)=1,2 Тл
По кривой намагничивания рис. 8,9, а магнитной индукции Вm=1,2 Тл соответствует напряженность магнитного поля Нcт=20 А/см.
Напряженность поля в воздушном зазоре равна
Н0=В0/μ0=1,2/1,256∙10-6=106 А/м.
Амплитуда намагничивающего тока
Iμm=(Hcтlст+H0l0)/w1=(20∙25+106∙0,01∙10-2)=2,4 A.
Намагничивающий ток равен
Iμ= Iμm/√2=2,41/1,41=1,7.A. ответ: 2
Не сказано, что цилидры бесконечные, равно как и то, что расстояние от общей оси цилиндров до искомой точки намного меньше длины цилиндров. А без таких оговорок решение такой задачи становится несопоставимо более сложным. К тому же, для решения конечной задачи требуется и сама фактическая длина цилиндров, а поскольку такая длина не указана, то будем считать, цилиндры бесконечными.
В этом случае, по теореме Гаусса:
K = Q/εo; где K - полный поток поля по замкнутой поверхности, Q - заряд, окружённый этой поверхностью, а εo - диэлектрическая проницаемость вакуума.
Рассмотрим замкнутую поверхность в виде поперечно срезанного коаксиального заданным цилиндра с радиусом L = 8 см и длиной x. Ясно, что в эту поверхность войдёт только меньший цилиндр, а значит, большой внешний для данной точки цилиндр вообще не будет влиять на поток электростатического поля через выбранную поверхность.
Учтём, что в силу симметрии и бесконечности заряженных цилиндров, поле в любой точке будет направлено перпендикулярно к оси цилиндров, и будет иметь напряжённость - модуль которой чётко определяется расстоянием до оси.
Из этих предпосылок следует, что поток электростатического поля через торцы выбранной цилиндрической поверхностности - окажется равным нулю. А поток чрез её боковую поверхность - окажется равным произведению её площади на модуль напряжённоости поля на расстоянии L от оси.
K = Q/εo;
2πLxE = 2πrxσ/εo;
LE = rσ/εo, где r и σ - радиус и поверхностная плотность заряда меньшего цилиндра.
E = (r/L) σ/εo;
Вычисляем:
E ≈ (5/8) (2 / 1 000 000 000) / (8.85 / 1 000 000 000 000) =
= 1250 / 8.85 ≈ 141 В/м.