Как легко видеть – работа ведущей силы на 160 Дж больше суммы работы силы трения и силы тяжести. Эта разница превращается в кинетическую энергию, с которой тело движется в конце.
Пусть скорость катера при движении из пункта A равна при движении обратно — — скорость катера относительно воды, — скорость течения реки. Заметим, что скорость а скорость Имеем: Модуль скорости движения катера относительно берега при его движении из пункта А равен 2 км/ч.Для того, чтобы переплыть из пункта A в пункт B, находящийся на расстоянии 14 км от пункта A катерупонадобится Если увеличить модуль скорости катера в два раза, то его скорость при движении из пункта A относительно берега станет равной то есть модуль его скорости относительно берега увеличится более, чем в два раза. ответ: 25.
Поскольку тело не «подпрыгивает» над плоскостью, то N = Fn = mgcos45° ;
Отсюда сила трения Fтр = μN = μmgcos45° ;
Работа силы трения: Aтр = –FтрS
(сила препятствует перемещению, поэтому минус)
S = H/sin45° ;
Aтр = –FтрH/sin45° = –μmgHcos45°/sin45° = –μmgHctg45° ;
Aтр = –μmgHctg45° = –0.2*30*9.8*20 = –1176 Дж ;
Проекция силы тяжести на плоскость равна Fт = mgsin45° ;
Из кинематического уравнения можно найти ускорение:
S = at²/2 ;
a = 2S/t² = 2H/[t²sin45°] ;
Из второго закона Ньютона:
[F–Fт–Fтр]/m = a, найдём ведущую силу:
F = ma + Fт + Fтр = 2mS/t² + mgsin45° + μmgcos45° =
= ( 2H/[t²sin45°] + g ( sin45° + μcos45° ) ) m ;
Работа ведущей силы:
A = FS = ( 2H/[t²sin45°] + g ( sin45° + μcos45° ) ) mH/sin45° =
= ( 2H/[tsin45°]² + g ( 1 + μctg45° ) ) mH ;
A = ( 2H/[tsin45°]² + g ( 1 + μctg45° ) ) mH =
= ( 40/[17/√2]² + 9.8 ( 1 + 0.2 ) ) 30*20 = ( 8000/289 + 1176 )*6 = 7 220 Дж ;
Работа силы тяжести:
A = mg(–H) = –mgH ;
A = –mgH = –30*9.8*20 = –5 880 Дж .
Как легко видеть – работа ведущей силы на 160 Дж больше суммы работы силы трения и силы тяжести. Эта разница превращается в кинетическую энергию, с которой тело движется в конце.