Под средней длиной свободного пробега понимают среднее расстояние, которое проходит молекула между двумя последовательными соударениями. за секунду молекула в среднем проходит расстояние, численно равное ее средней скорости . если за это же время она испытает в среднем столкновений с другими молекулами, то ее средняя длина свободного пробега , очевидно, будет равна (3.1.1) предположим, что все молекулы, кроме рассматриваемой, неподвижны. молекулы будем считать шарами с диаметром d. столкновения будут происходить всякий раз, когда центр неподвижной молекулы окажется на расстоянии меньшем или равном d от прямой, вдоль которой двигается центр рассматриваемой молекулы. при столкновениях молекула изменяет направление своего движения и затем движется прямолинейно до следующего столкновения. поэтому центр движущейся молекулы ввиду столкновений движется по ломаной линии (рис. 1). рис. 1 молекула столкнется со всеми неподвижными молекулами, центры которых находятся в пределах ломаного цилиндра диаметром 2d. за секунду молекула проходит путь, равный . поэтому число происходящих за это время столкновений равно числу молекул, центры которых внутрь ломаного цилиндра, имеющего суммарную длину и радиус d. его объем примем равным объему соответствующего спрямленного цилиндра, т. е. равным если в единице объема газа находится n молекул, то число столкновений рассматриваемой молекулы за одну секунду будет равно (3.1.2) в действительности движутся все молекулы. поэтому число столкновений за одну секунду будет несколько большим полученной величины, так как вследствие движения окружающих молекул рассматриваемая молекула испытала бы некоторое число соударений даже в том случае, если бы она сама оставалась неподвижной. предположение о неподвижности всех молекул, с которыми сталкивается рассматриваемая молекула, будет снято, если в формулу (3.1.2) вместо средней скорости представить среднюю скорость относительного движения рассматриваемой молекулы. в самом деле, если налетающая молекула движется со средней относительной скоростью , то молекула, с которой она сталкивается, оказывается покоящейся, что и предполагалось при получении формулы (3.1.2). поэтому формулу (3.1.2) следует написать в виде: (3.1.3) предположим, что скорости молекул до столкновения были и тогда из треугольника скоростей имеем (рис. 2) (3.1.4) так как углы и скорости и , с которыми сталкиваются молекулы, очевидно, являются независимыми случайными величинами, то среднее рис. 2 от произведения этих величин равно произведению их средних. поэтому (3.1.5) с учетом последнего равенства формулу (3.1.4) можно переписать в виде: (3.1.6) так как cредняя квадратичная скорость пропорциональна средней скорости, (3.1.7) т. е. .поэтому соотношение (3.1.6) можно представить так: (3.1.8) с учетом последнего выражения формула для средней длины свободного пробега приобретает вид: (3.1.9) для идеального газа . поэтому (3.1.10) отсюда видно, что при изотермическом расширении (сжатии) средняя длина свободного пробега растет (убывает).как было отмечено во введении, эффективный диаметр молекул убывает с ростом температуры. поэтому при заданной концентрации молекул средняя длина свободного пробега увеличивается с ростом температуры. вычисление средней длины свободного пробега для азота (d = 3•10-10 м), находящегося при нормальных условиях (р = 1,01•105 па, т = 273,15 к) дает: , а для числа столкновений за одну секунду: . таким образом, средняя длина свободного пробега молекул при нормальных условиях составляет доли микрон, а число столкновений – несколько миллиардов в секунду. поэтому процессы выравнивания температур (теплопроводность), скоростей движения слоев газа (вязкое трение) и концентраций (диффузия) являются достаточно медленными, что подтверждается опытом.
Писал-писал, нажал на кнопку – пропало. Что за лажа.
Ну ладно, напишу ещё раз. Слушай сюда.
1. Сначала найди максимальную высоту, на которую поднимется первый мяч. Это будет h0 = v0 ^2 / (2g) = подставил = 4,9 метра. Потом пишешь уравнения движения первого h1 и второго h2 мячей начиная от момента достижения первым наивысшей точки. Уравнения такие: h1 = h0 – gt^2/2; h2 = v0*t – gt^2/2. Поскольку мячи встретились, то h1 = h2. Решай это уравнение: h0 – gt^2/2 = v0*t – gt^2/2, отсюда h0 = V0 * t, узнаёшь t = h0 / v0 = 1/2 с – это время до встречи мячей. Осталась малость – подставил t в любое из двух уравнений движения, например первое, и получаешь profit: h1 = h0 – gt^2/2 = 4,9 – 0,25 * 4,9 = 0,75 * 4,9 = 3,75 метра.
2. По закону сохранения энергии: в начале задачи столб имеет потенциальную энергию Еп=mgh*1/2 (половина, потому что центр масс столба находится на половине высоты его верхушки, смекнул?). В конце задачи столб имеет кинетическую энергию Ек=1/2 * I * w^2, где I – момент инерции стержня I = 1/3 * m * h^2, w – угловая скорость столба в момент падения. Приравнял энергии, подставил момент инерции, сократил массу, выразил w = корень из ( 3 * g / h). Поскольку линейная скорость v = w * h, то подставил опять, и получил v = корень из ( 3 * g * h ) = корень из ( 3 * 9,81 * 5 ) = у меня получилось что-то типа 12 м/с.
Третью не знаю, мы ещё частицы не проходили. Там, говорят, квантовая механика какая-то. Учительнице привет, поцелуй её от меня. Если моё решение на проверку окажется неправильным, то дай мне знать, ладно?
Писал-писал, нажал на кнопку – пропало. Что за лажа.
Ну ладно, напишу ещё раз. Слушай сюда.
1. Сначала найди максимальную высоту, на которую поднимется первый мяч. Это будет h0 = v0 ^2 / (2g) = подставил = 4,9 метра. Потом пишешь уравнения движения первого h1 и второго h2 мячей начиная от момента достижения первым наивысшей точки. Уравнения такие: h1 = h0 – gt^2/2; h2 = v0*t – gt^2/2. Поскольку мячи встретились, то h1 = h2. Решай это уравнение: h0 – gt^2/2 = v0*t – gt^2/2, отсюда h0 = V0 * t, узнаёшь t = h0 / v0 = 1/2 с – это время до встречи мячей. Осталась малость – подставил t в любое из двух уравнений движения, например первое, и получаешь profit: h1 = h0 – gt^2/2 = 4,9 – 0,25 * 4,9 = 0,75 * 4,9 = 3,75 метра.
2. По закону сохранения энергии: в начале задачи столб имеет потенциальную энергию Еп=mgh*1/2 (половина, потому что центр масс столба находится на половине высоты его верхушки, смекнул?). В конце задачи столб имеет кинетическую энергию Ек=1/2 * I * w^2, где I – момент инерции стержня I = 1/3 * m * h^2, w – угловая скорость столба в момент падения. Приравнял энергии, подставил момент инерции, сократил массу, выразил w = корень из ( 3 * g / h). Поскольку линейная скорость v = w * h, то подставил опять, и получил v = корень из ( 3 * g * h ) = корень из ( 3 * 9,81 * 5 ) = у меня получилось что-то типа 12 м/с.
Третью не знаю, мы ещё частицы не проходили. Там, говорят, квантовая механика какая-то. Учительнице привет, поцелуй её от меня. Если моё решение на проверку окажется неправильным, то дай мне знать, ладно?