ПОЖА́ЛУЙСТА ОЧЕНЬ С учебника, линейки и подобных прямоугольных треугольников определите расстояние до окна соседнего здания если вертикальный размер 130 см.
Примем подножие горы за точку отсчета, а также что первый велосипедист движется в положительном направлении вдоль оси Ox. Тогда изначальная координата кторого велосипедиста будет равна расстоянию между ними, x0,2=195 м. Координата при равноускореннром движении
Велосипедисты встретятся, когда их координаты станут равными, т.е.
Отметим, что ускорения велосипедистов равны по модулю и направлены в одну сторону: Первый велосипедист замедляется, поэтому его ускорение отрицательно; второй ускоряется, но движется против оси Ox, поэтому его ускорение также отрицательно относительно системы координат. Таким образом, у обоих ускорений равны между собой и модуль, и знак. Сокращаем:
Начальные скорости велосипедистов в м/с: Первый -- 5 м/с, второй -- -1.5 м/с (помним, что второй велосипедист движется против оси Ox, поэтому его скорость отрицательна). Таким образом, время встречи
Примем подножие горы за точку отсчета, а также что первый велосипедист движется в положительном направлении вдоль оси Ox. Тогда изначальная координата кторого велосипедиста будет равна расстоянию между ними, x0,2=195 м. Координата при равноускореннром движении
Велосипедисты встретятся, когда их координаты станут равными, т.е.
Отметим, что ускорения велосипедистов равны по модулю и направлены в одну сторону: Первый велосипедист замедляется, поэтому его ускорение отрицательно; второй ускоряется, но движется против оси Ox, поэтому его ускорение также отрицательно относительно системы координат. Таким образом, у обоих ускорений равны между собой и модуль, и знак. Сокращаем:
Начальные скорости велосипедистов в м/с: Первый -- 5 м/с, второй -- -1.5 м/с (помним, что второй велосипедист движется против оси Ox, поэтому его скорость отрицательна). Таким образом, время встречи
Велосипедисты встретятся, когда их координаты станут равными, т.е.
Отметим, что ускорения велосипедистов равны по модулю и направлены в одну сторону: Первый велосипедист замедляется, поэтому его ускорение отрицательно; второй ускоряется, но движется против оси Ox, поэтому его ускорение также отрицательно относительно системы координат. Таким образом, у обоих ускорений равны между собой и модуль, и знак. Сокращаем:
Начальные скорости велосипедистов в м/с: Первый -- 5 м/с, второй -- -1.5 м/с (помним, что второй велосипедист движется против оси Ox, поэтому его скорость отрицательна). Таким образом, время встречи
t = 195 м / (5 м/с + 1.5 м/с) = 30 с
Координата встречи:
x = - 0,2 м/с² / 2 * (30 с)² + 5 м/с * 30 = 60 м
Второй велосипедист пройдет путь:
s2 = 195 м - 60 м = 135 м
Велосипедисты встретятся, когда их координаты станут равными, т.е.
Отметим, что ускорения велосипедистов равны по модулю и направлены в одну сторону: Первый велосипедист замедляется, поэтому его ускорение отрицательно; второй ускоряется, но движется против оси Ox, поэтому его ускорение также отрицательно относительно системы координат. Таким образом, у обоих ускорений равны между собой и модуль, и знак. Сокращаем:
Начальные скорости велосипедистов в м/с: Первый -- 5 м/с, второй -- -1.5 м/с (помним, что второй велосипедист движется против оси Ox, поэтому его скорость отрицательна). Таким образом, время встречи
t = 195 м / (5 м/с + 1.5 м/с) = 30 с
Координата встречи:
x = - 0,2 м/с² / 2 * (30 с)² + 5 м/с * 30 = 60 м
Второй велосипедист пройдет путь:
s2 = 195 м - 60 м = 135 м