1) для того, чтобы найти момент времени, в который скорости обеих точек будут одинаковыми, приравняем формулы конечных скоростей обеих точек
для первой точки имеем V1 = V01 + a1 t
для второй V2 = V02 + a2 t
получаем
V01 + a1 t = V02 + a2 t
t (a1 - a2) = V02 - V01
t = (V02 - V01) / (a1 - a2)
t = (6 - 3) / (-0,2 + 0,8) = 3 / 0,6 = 5 c
пояснение: V01 и V02 - это начальные скорости точек, которые можно определить по уравнению координаты (x = x0 + V0x t + a(x) t^2 / 2). тоже самое и с ускорениями
2) собственно, про ускорения: они даны по условию. можно заметить из написанного выше уравнения координаты, что ускорение делится пополам. значит, для первой точки ускорение равняется a1 = - 0,2 м/с^2, а для второй точки a2 = - 0,8 м/с^2
3) для определения скоростей точек, воспользуемся формулой V = V0 + a t
Объяснение:
№1
P = IU = I²R
P1/P2 = ( ( 2I )²( R/4 ) )/( I²R ) = ( I²R )/( I²R ) = 1
№2
η = Рпол./Рзат. * 100%
η = ( I2U2 )/( I1U1 ) 100%
I1 = ( I2U2 )/( ηU1 ) 100%
I1 = ( 9 * 22 )/( 90% * 220 ) 100% = 1 A
№3
λ = Тv
λ = 2π√( LCоб. )v
λ = 2π√( L( C1 + C2 ) )v
λ = 2 * 3,14 √( 10 * 10^-3 ( 360 * 10^-12 + 40 * 10^-12 ) ) 3 * 10^8 = 2 * 3,14 √( 10^-2 ( ( 36 + 4 ) 10^-11 ) 3 * 10^8 = 3768 м
№4
WC( max ) = ( CU( max )² )/2
WL( max ) = ( LI( max )² )/2
W = WC( max ) = WL( max )
( CU( max )² )/2 = ( LI( max )² )/2
CU( max )² = LI( max )²
С = ( LI( max )² )/( U( max )² )
W = WC + WL
W = ( CU² )/2 + ( LI² )/2
( CU( max )² )/2 = ( CU² )/2 + ( LI² )/2
CU( max )² = CU² + LI²
LI( max )² = ( LI( max )²U² )/U( max )² + LI²
LI( max )² = L ( I( max )²U² )/U( max )² + I² )
I( max )² = ( I( max )²U² )/U( max )² + I²
Подставим численные данные и решим уравнение
( 5 * 10^-3 )² = ( ( 5 * 10^-3 )²U²/2² ) + ( 3 * 10^-3 )²
2,5 * 10^-5 = 6,25 * 10^-6U² + 9 * 10^-6
( 25 - 9 ) 10^-6 = 6,25 * 10^-6U²
16 = 6,25U²
U = √( 16/6,25 ) = 1,6 B
1) для того, чтобы найти момент времени, в который скорости обеих точек будут одинаковыми, приравняем формулы конечных скоростей обеих точек
для первой точки имеем V1 = V01 + a1 t
для второй V2 = V02 + a2 t
получаем
V01 + a1 t = V02 + a2 t
t (a1 - a2) = V02 - V01
t = (V02 - V01) / (a1 - a2)
t = (6 - 3) / (-0,2 + 0,8) = 3 / 0,6 = 5 c
пояснение: V01 и V02 - это начальные скорости точек, которые можно определить по уравнению координаты (x = x0 + V0x t + a(x) t^2 / 2). тоже самое и с ускорениями
2) собственно, про ускорения: они даны по условию. можно заметить из написанного выше уравнения координаты, что ускорение делится пополам. значит, для первой точки ускорение равняется a1 = - 0,2 м/с^2, а для второй точки a2 = - 0,8 м/с^2
3) для определения скоростей точек, воспользуемся формулой V = V0 + a t
имеем для первой точки V1 = V01 + a1 t
V1 = 3 - 0,2 * 5 = 2 м/с
соответственно для второй точки V2 = V02 + a2 t
V2 = 6 - 0,8 * 5 = 2 м/с