При изобарное расширении одноатомного идеального газа неона Ne массой m= 10 г ему передано количество теплоты Q= 1000Дж. При этом температура газа возросла от Т1 до Т2=350 К. Определить Т1?
Мощность P = 6 Вт, площадь пластины S = 10 см², коэффициент отражения R = 0.6
Пусть за время Δt на пластину упали N фотонов, общая энергия всех фотонов E = P Δt, энергия каждого фотона (в предположении, что свет монохроматический) e = E/N = P Δt/N. Импульс каждого налетающего фотона равен п = e/c. Посчитаем, какой импульс налетающие фотоны передали пластине. - Отражённые фотоны (их было RN) передают пластине импульс Δп = 2п - Поглощённые фотоны (их было (1-R)N) передают платине импульс Δп = п Суммарно за время Δt пластине будет передан импульс ΔП = RN * 2п + (1-R)N * п = пN * (2R + 1 - R) = (1 + R) пN = (1 + R) (P/c) Δt
Сила F, действующая на пластину, по второму закону Ньютона F = ΔП / Δt = (1 + R) * P/c
Давление - сила, отнесённая к площади: p = F/S = (1 + R) * P / cS = 1.6 * 6 / (3*10^8 * 10*10^-4) = 3.2*10^-5 Па = 32 мкПа
Пусть за время Δt на пластину упали N фотонов, общая энергия всех фотонов E = P Δt, энергия каждого фотона (в предположении, что свет монохроматический) e = E/N = P Δt/N. Импульс каждого налетающего фотона равен п = e/c. Посчитаем, какой импульс налетающие фотоны передали пластине.
- Отражённые фотоны (их было RN) передают пластине импульс Δп = 2п
- Поглощённые фотоны (их было (1-R)N) передают платине импульс Δп = п
Суммарно за время Δt пластине будет передан импульс ΔП = RN * 2п + (1-R)N * п = пN * (2R + 1 - R) = (1 + R) пN = (1 + R) (P/c) Δt
Сила F, действующая на пластину, по второму закону Ньютона
F = ΔП / Δt = (1 + R) * P/c
Давление - сила, отнесённая к площади:
p = F/S = (1 + R) * P / cS = 1.6 * 6 / (3*10^8 * 10*10^-4) = 3.2*10^-5 Па = 32 мкПа
ответ. p = 32 мкПа
1,4
Объяснение:
Плотность алюминия ρ_a = 2,7 · 10³ кг/м³, плотность меди ρ_м = 8.9 · 10³ кг/м³.
Дано:
V_а = V_м = V,
ρ_a = 2,7 · 10³ кг/м³
M_а = 27 · 10⁻³ кг/моль
ρ_м = 8.9 · 10³ кг/м³
M_м = 64 · 10⁻³ кг/моль
N_м/N_a - ?
Число частиц вещества, содержащегося в некотором его объёме, определим по формуле:
N=m/m₀, где m — масса всех частиц вещества (m=ρV), m₀ — масса одной частицы m₀ = M/N_a
Для сравнения числа частиц вещества в алюминиевом и медном кубиках одинакового объёма выведем соотношение:
N_м/N_a = (ρ_м · M_а)/ρ_a · M_м)
N_м/N_a = (8.9 · 10³ кг/м³ · 27 · 10⁻³ кг/моль)/(2,7 · 10³ кг/м³ · 64 · 10⁻³ кг/моль) = 1,4