При нагревании медного проводника сечением S = 3 × 10-2 мм его сопротивление увеличивалось на 2,5 Ом. Медь имеет плотность 8,9 × 10³ кг / м, удельную теплоемкость Дж / (кг · К), температурный коэффициент сопротивления 3,9 × 10-3К-1, удельную проводимость 5,70 × 10⁵Ом. Найти изменение внутренней энергии проводника при нагревании
Схема состоит из:
группы сопротивлений R₂ и R₂', соединенных последовательно,
сопротивления R₃, соединенного параллельно с первой группой,
сопротивления R₁, соединенного последовательно с первыми двумя группами.
Преобразовать схему можно так: (см. рис.1)
Тогда общее сопротивление R₂ и R₂':
R₂₂ = R₂ + R₂' = 20 + 20 = 40 (Ом)
То есть сопротивления R₂ и R₂' можно заменить одним сопротивлением R₂₂ = 40 (Ом) (см. рис.2)
Общее сопротивление R₂₂ и R₃:
R₂₂₃ = R₂₂•R₃ : (R₂₂+R₃) = 40•60 : 100 = 24 (Ом)
Общее сопротивление цепи с учетом R₁:
R = R₁ + R₂₂₃ = 6 + 24 = 30 (Ом)
Общий ток в цепи:
I = I₁ = U/R = 240 : 30 = 8 (A)
Напряжение на первом сопротивлении:
U₁ = I · R₁ = 8 · 6 = 48 (B)
Напряжение на группе сопротивлений R₂₂₃:
U₂₂₃ = U - U₁ = 240 - 48 = 192 (B)
Ток, протекающий через R₃:
I₃ = U₂₂₃ : R₃ = 192 : 60 = 3,2 (A)
Ток, протекающий через R₂₂:
I₂₂ = U₂₂₃ : R₂₂ = 192 : 40 = 4,8 (A)
Напряжение на R₂ и R₂':
U₂ = U₂' = R₂I₂₂ = R₂'I₂₂ = 20 · 4,8 = 96 (B)
1.
Дано:
m=7 кг
V=300 км/ч
V₀=0
l=0.9 м
Найти: F-?
s= (V²-V₀²)/2a, т.к. V₀=0, то s=V²/(2a) - (домножим обе части на 2а, чтобы избавиться от знаменателя):
2as=V²
a=V²/(2s)
Теперь пользуясь формулой из второго закона Ньютона, подставим в него вместо ускорения a то, что у нас получилось:
F=m*a=m*V²/(2s) = (7*300²*1000²)/(3600²*2*0.9)=27006.17 Н= 27кН
ответ: F= 27кН
2.
А = Е2 - Е1
Е2 = mv²/2
E1 = mv₀²/2 + mgh
A = -18125 -2450h
3.
Дано:
m= 9.8 кг
Т = 3с
Найти:
k-?
v-?
1) Т = 2π√(m/k)
k = (4π²m)/T² = (4*9.8596*9.8)/9=49 Н/м
2) v = 1/T = 1/3 = 0.3 Гц
ответ: k=49 Н/м; v=0,3Гц