Плотность тела - отношение массы тела к объему который он занимает. Если вы знаете, что тело сделано из свинца, то вы можете просто посмотреть в таблице, и данные о радиусе шара излишни, но я полагаю, что вам нужно найти массу, а не плотность. Тогда нужно знать и объем. Объем шара находится по формуле:
, где R - радиус шара, П - число пи ≈3,14. Но нужно понимать, что единицы измерения должны быть соизмеримы. Поэтому советую найти плотность свинца в граммах на сантиметры кубические, и мм перевести в сантиметры, найти массу как произведение плотности на объем и перевести ее в кг. Но если речь действительно о плотности, то реально данные о радиусе шара не нужны
1.Импульс силы: величина (векторная), равная произведению силы на время ее действия, мера воздействия силы на тело за данный промежуток времени (в поступательном движении).
Просто импульс (тела): мера механического движения, величина (векторная), равная произведению массы этой точки (или тела) на её скорость и направленную так же, как вектор скорости. 3.Значение потенциальной энергии тела, поднятого над Землей, зависит от выбора нулевого уровня, то есть высоты, на которой потенциальная энергия принимается равной нулю. Обычно принимают, что потенциальная энергия тела на поверхности Земли равна нулю.
При таком выборе нулевого уровня потенциальная энергия тела, находящегося на высоте h над поверхностью Земли, равна произведению массы тела на Модуль ускорения свободного падения и расстояние его от поверхности Земли:
Wp = mgh.
Из всего выше сказанного, можем сделать вывод: потенциальная энергия тела зависит всего от двух величин, а именно: от массы самого тела и высоты, на которую поднято это тело. Траектория движения тела никак не влияет на потенциальную энергию 6.Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.
В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.
Как и любой из фундаментальных законов сохранения, закон сохранения импульса описывает одну из фундаментальных симметрий, - однородность пространства.
Объяснение:
Плотность тела - отношение массы тела к объему который он занимает. Если вы знаете, что тело сделано из свинца, то вы можете просто посмотреть в таблице, и данные о радиусе шара излишни, но я полагаю, что вам нужно найти массу, а не плотность. Тогда нужно знать и объем. Объем шара находится по формуле:
, где R - радиус шара, П - число пи ≈3,14. Но нужно понимать, что единицы измерения должны быть соизмеримы. Поэтому советую найти плотность свинца в граммах на сантиметры кубические, и мм перевести в сантиметры, найти массу как произведение плотности на объем и перевести ее в кг. Но если речь действительно о плотности, то реально данные о радиусе шара не нужны
величина (векторная), равная произведению силы на время ее действия, мера воздействия силы на тело за данный промежуток времени (в поступательном движении).
Просто импульс (тела):
мера механического движения, величина (векторная), равная произведению массы этой точки (или тела) на её скорость и направленную так же, как вектор скорости.
3.Значение потенциальной энергии тела, поднятого над Землей, зависит от выбора нулевого уровня, то есть высоты, на которой потенциальная энергия принимается равной нулю. Обычно принимают, что потенциальная энергия тела на поверхности Земли равна нулю.
При таком выборе нулевого уровня потенциальная энергия тела, находящегося на высоте h над поверхностью Земли, равна произведению массы тела на Модуль ускорения свободного падения и расстояние его от поверхности Земли:
Wp = mgh.
Из всего выше сказанного, можем сделать вывод: потенциальная энергия тела зависит всего от двух величин, а именно: от массы самого тела и высоты, на которую поднято это тело. Траектория движения тела никак не влияет на потенциальную энергию
6.Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.
В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.
Как и любой из фундаментальных законов сохранения, закон сохранения импульса описывает одну из фундаментальных симметрий, - однородность пространства.