При поднесении заряженной палочки к шарику не. заряженного электрометра прибор начинает показывать на личие заряда еще до соприкосновения (рис. 83). почему? что наблюдается при отдалении палочки от прибора?
Полый стальной шарик объёмом V = 9 см³ равномерно и прямолинейно поднимается вертикально вверх со дна стакана, заполненного водой. Плотность стали равна p1 = 7,8 г/см³, плотность воды — p2 = 1,0 г/см³, плотность воздуха, заполняющего полость в шарике, равна p3 = 1,29 кг/м³ = 1,29*10^(-3) г/см³ . С точностью до кубического миллиметра определи объём v воздушной полости в шарике.
Сила Архимеда равна F° = V*p2*g
Она равна весу шарика: Р = (V – v)*p1*g + v*p2*g — поскольку шарик не тонет, но и не поднимается ускоренно.
Из условия: F° = P имеем: V*p2*g = (V – v)*p1*g + v*p3*g или:
Объективом проекционного прибора служит тонкая линза с фокусным расстоянием 10 см. Изображение предмета получено на расстоянии 24мм. см от объекта. На какое расстояние переместится изображение, если предмет отодвинуть еще на 21 мм от объектива? Условие: F = 24 мм; f = 21мм см; Δd = 20 см; Определить Δ f - ?Решение. Используем формулу линзы: 1/F = 1/d +1/f ; Определяем, на каком расстоянии находится предмет d = fF/(f –F); Вычисляем (можно и в см): d = 24*21/(24 -21) = 168(мм); Теперь, применяя всё ту же формулу линзы, находим, на каком расстоянии будет изображение, если предмет расположим на расстоянии ; d + Δd = 168 + 20 = 188 (мм); f = dF/(d – F); f = 24*21/(24– 21) = 168мм. Находим, на какое расстояние передвинулось изображение: Δ f = f (2) – f (1) =
Полый стальной шарик объёмом V = 9 см³ равномерно и прямолинейно поднимается вертикально вверх со дна стакана, заполненного водой. Плотность стали равна p1 = 7,8 г/см³, плотность воды — p2 = 1,0 г/см³, плотность воздуха, заполняющего полость в шарике, равна p3 = 1,29 кг/м³ = 1,29*10^(-3) г/см³ . С точностью до кубического миллиметра определи объём v воздушной полости в шарике.
Сила Архимеда равна F° = V*p2*g
Она равна весу шарика: Р = (V – v)*p1*g + v*p2*g — поскольку шарик не тонет, но и не поднимается ускоренно.
Из условия: F° = P имеем: V*p2*g = (V – v)*p1*g + v*p3*g или:
V*p2 = (V – v)*p1 + v*p3 ==>. V*p2 = V*р1 – v*p1 + v*p3 ==>
V*(p2–p1) = v*(p3–p1). Отсюда: v = V*(p2–p1)/(p3–p1) = 9*(1.0-7.8)/(1,29*10^(-3)-7.8) = 7.84745 см³ = 7847 мм³.
Итак: v = 7847 см³.
Объективом проекционного прибора служит тонкая линза с фокусным расстоянием 10 см. Изображение предмета получено на расстоянии 24мм. см от объекта. На какое расстояние переместится изображение, если предмет отодвинуть еще на 21 мм от объектива? Условие: F = 24 мм; f = 21мм см; Δd = 20 см; Определить Δ f - ?Решение. Используем формулу линзы: 1/F = 1/d +1/f ; Определяем, на каком расстоянии находится предмет d = fF/(f –F); Вычисляем (можно и в см): d = 24*21/(24 -21) = 168(мм); Теперь, применяя всё ту же формулу линзы, находим, на каком расстоянии будет изображение, если предмет расположим на расстоянии ; d + Δd = 168 + 20 = 188 (мм); f = dF/(d – F); f = 24*21/(24– 21) = 168мм. Находим, на какое расстояние передвинулось изображение: Δ f = f (2) – f (1) =